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We discuss what has been accomplished over the past three years for the online statistical analysis of neutron
time intervals (OSANTI) algorithm project.

I. EXECUTIVE SUMMARY

A. Objective

When confronting an item that may contain nuclear
material, it is urgently necessary to determine its char-
acteristics. Our goal is to provide accurate information
with high-confidence as rapidly as possible.

B. Existing Methods

Assay of nuclear materials using neutron multiplicity
methods has, to date, been based on the combinatorial
moments of the neutron counting distributions from, usu-
ally, randomly-triggered time gates1–12 as detailed in Eqs.
79-96.

To assay a low-count-rate neutron source such as
highly-enriched uranium (HEU), current neutron multi-
plicity analysis methods require a significant amount of
data especially when using low-efficiency neutron multi-
plicity counters. Current methods also require the user
to provide an estimate of the detection efficiency a priori
because, in the analysis, detection efficiency can be ex-
changed for mass and multiplication. Only if the third
moment Y3(T ), and thus R3, are well-constrained are
the existing algorithms somewhat self-calibrating. For
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FIG. 1. The first 50 “BigFit” solutions for multiplication M
vs. 238U mass mS for the first test object discussed below in
§I E. The user is left with the conundrum of trying to estimate
the detection efficiency to narrow down the actual multipli-
cation M and 238U mass mS.

low-count-rate sources, this often requires many hours of
data.

This degeneracy has long been a serious problem be-
cause the neutron-absorbing properties of materials may
not by known and additional nearby reflectors greatly
complicate the determination of the efficiency. This sin-
gle issue has caused numerous erroneous assays and much
effort has been devoted to finding a work-around.

Currently, the most sophisticated neutron multiplicity
analysis is “BigFit” which compares measured count dis-
tributions bn(T ), Eq. 50, for T = 1, 2, 3, · · · , 512 µs to
a grid of theoretical distributions precomputed from first
principles. “BigFit” uses precomputed distributions for
em, Eq. 62, and folds in the diffusion time λ−1 according
to Eq. 77. An analysis of the first test object discussed in
§I E below provides an array of answers as shown in Fig.
1. The user is then left with the conundrum of trying
to estimate the detection efficiency to narrow down the
actual multiplication M and 238U mass mS.

When creating a neutron counting distribution using
randomly-triggered time gates, one incurs a substantial
loss of information. The first test object discussed below
in §I E had a count rate of 12.9 neutrons per second. In
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FIG. 2. Feynman histogram for the number of neutrons
counted during a randomly-triggered time gate of duration
T = 499 µs for a 10 minute measurement of the first test ob-
ject discussed below in §I E. A total of 7,741 neutrons were
counted.

10 minutes, a total of 7,741 neutrons were counted. The
time-tagged, list-mode data consisting of the arrival time
of each neutron therefore starts with 7,741 pieces of infor-
mation for a continuous variable (limited only by the time
resolution of the detector’s electronics). The neutron
counting distribution has only 20 pieces of information—
the non-zero multiplets—for a discrete variable as shown
in Fig. 2. An apt analogy would be to consider the degra-
dation in image quality that would result if one went from
an image with 7,741 pixels to only 20.

Lastly, methods based on neutron counting distribu-
tions must consider count distributions for time gates
of varying durations T . Because the method is so in-
efficient, the same neutrons are invariably used in the
count distributions for every value of T (an example of a
commonly-used time-binning structure is shown in Fig.
21). The problem is, the covariance between count dis-
tributions for different values of T is unknown making
it impossible to rigorously compute even basic statistical
uncertainties.

C. Improvements Over Existing Methods

We have developed a new method that considers the
waiting time from one neutron to the next on a neutron-
by-neutron basis. This method, by comparison, incurs no
loss of information relative to the original time-tagged,
list-mode data. Our method has demonstrated several
significant benefits compared with existing methods:

• We converge to an answer within ≤ 500 neutrons—
about one minute. Existing methods typically require

& 1 hour of data to be able to develop an answer.

• We are able to assay the neutron source without an a
priori estimate of the detection efficiency. The algo-
rithm is self-calibrating. Existing algorithms require
the user to provide an estimate of the detection effi-
ciency to constrain the analysis to a reasonable range
of mass mS of 238U and keff .

• Because our algorithm computes the probability dis-
tribution function (PDF) for an answer (e.g. keff), it
automatically provides confidence intervals and quan-
tifies the uncertainties. Existing methods do not pro-
vide an estimate of any confidence intervals or uncer-
tainties.

D. Our New Method

This new algorithm, in broad strokes, required us to
develop several new approaches:

1. Rapid computation of the probability distribution en
for the number n of neutrons detected from a fission
chain (discussed in §II). We were able to make the
computation of this distribution approximately 50,000
times faster.

2. Extension of the theory for the waiting times between
the correlated neutrons from a fission chain to include
background neutrons (which may themselves be cor-
related) (discussed in §III). For the low-count rate
sources this algorithm is intended to assay, background
neutrons can account for ≈ 50% of the neutrons.

3. A sequential Bayesian “particle filter” to compute the
PDF for a physical parameter of interest where the
answer is taken as the most probable value—the max-
imum a posteriori probability (MAP) estimate (dis-
cussed in §IV).

E. Results

Two highly enriched uranium (HEU) sources were as-
sayed:

1. The first source had a count rate of 12.9 neutrons per
second, included a mass mS ≈ 6 kg of 238U, and the
configuration had keff ≈ 0.87. No hydrogenous ma-
terial was present making the neutron diffusion time
λ−1 ≈ 40 µs which is the diffusion time in the high-
density polyethylene (HDPE) in the MC-15 Joint Mul-
tiplicity Counter used to make the measurements.

2. The second source had a count rate of 2.7 neutrons per
second, included ≈ 1.6 kg of 238U, and the configura-
tion had keff ≈ 0.5. A 4 inch thick layer of moderating
material loosely surrounded the HEU making the neu-
tron diffusion time λ−1 ≈ 75 µs. This includes the

LLNL-TR-676944 31 August 2015



3

Count Time to Time to
Source

Count
Rate, Count Analyze

Rate
No Bkgd 500 n 500 n

Bkgd; 2 MC-15s 1.06 s−1 — — —
First; 2 MC-15s
mS ≈ 6 kg 238U 12.9 s−1 ≈ 11.8 s−1 ≈ 38 s ≈ 120 s
keff ≈ 0.87

Second; 2 MC-15s
mS ≈ 1.6 kg 238U 2.7 s−1 ≈ 1.6 s−1 ≈ 190 s ≈ 120 s

keff ≈ 0.5

TABLE I. Comparison of the count rates and typical times to
count and analyze 500 neutrons for the two sources.

non-negligible time-of-flight and the diffusion time in
the MC-15’s HDPE.

Count rates, count times, and typical analysis times
are summarized in Table I.

An overnight measurement of background neutrons
was made using two MC-15 detectors connected together
to function as a single, larger detector. In total, the mea-
surement counted 53,330 neutrons. The distribution of
waiting times between successive neutrons is shown in
Fig. 3. The background count rate was 1.06 neutrons
per second. Given that there were only . 30 plausibly-
correlated neutrons in the overnight measurement, the
random approximation was deemed perfectly adequate.
It also has the advantage that it can be parameterized
with only a single quantity—the count rate. The likeli-
hood function that was used for the analyses presented
here was the much simpler Eq. 126.

Results of measurements made at the NTS DAF with
the new MC-15 Joint Multiplicity Counter are shown be-
low. For the first test object, the result of measurements
by two MC-15s connected together to function as a sin-
gle larger detector are shown in Fig. 5. The data set
was then evaluated considering 500 neutrons at a time
and the result of an ensemble of 100 runs are shown in
Fig. 6. A comparison of the theory constructed using the
estimated parameters, Eq. 125 or 126, to the measured
time interval distribution is shown in Fig. 7.

The results of a measurement of the first test object by
a single MC-15 are shown in Fig. 8. For this evaluation,
the background count rate was taken as 0.53 neutrons
per second. The data set was again evaluated considering
500 neutrons at a time and the result of an ensemble of
100 runs are shown in Fig. 9. Note that the detection
efficiency is roughly half what was found using two MC-
15s, as expected.

For the second test object, the results of a measure-
ment by two MC-15s connected together to function as a
single larger detector are shown in Fig. 10. The data set
was again evaluated considering 500 neutrons at a time
and the result of an ensemble of 100 runs are shown in
Fig. 11.
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FIG. 3. Time interval distribution for an overnight measure-
ment of 53,330 background neutrons at the DAF as mea-
sured by two MC-15 Joint Multiplicity Counters connected
together. The solid red line is the theoretical distribution, Eq.
120. The solid blue line is the random (exponential) distri-
bution. Given that there were only . 30 plausibly-correlated
neutrons out of the 53,330 neutrons in the overnight mea-
surement, the random approximation was deemed perfectly
adequate. It also has the advantage that it can be parame-
terized with only a single quantity—the count rate RBkg

1 .

F. Sensitivity

One take-away from these tests is that the assessed
mass of 238U is not well-constrained, particularly in the
low-mass and low-keff case. As an additional test, the
Monte Carlo N-Particle Transport Code (MCNP) was
used to calculate the detection efficiency for the second
test source in the configuration it was measured in in-
cluding the detector and its position relative to the test
object, and the size, composition, and measurement lo-
cation within the room. The result of an ensemble of 100
runs are shown in Fig. 12. The interesting conclusion is
that the assessed value of the mass does not improve.

MCNP was used to simulate a scenario, shown in Figs.
4 or 39, which was as follows:

1. HEU (93% enriched): r = 7.5 cm, m = 33 kg, ρ =
18.67 g/cm3, mass of 238U mS = 1.837 kg

2. 72:18:10 (Fe:Cr:Ni) Steel: r = 10.0 cm, thickness = 2.5
cm, m = 19.13 kg, ρ = 7.9 g/cm3

3. Inside air-filled, 1 mm thick 72:18:10 (Fe:Cr:Ni) Steel
drum: r = 30.0 cm, l = 88.0 cm, m = 17.57 kg, ρ = 7.9
g/cm3

4. One MC-15 joint multiplicity counter, front and back
panels separated on either side of the drum 31 cm from
the center of the source (shown in red in Fig. 4 or 39).
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FIG. 4. Schematic of the setup of the HEU in steel configura-
tion used in the MCNP simulation. The HEU is the turquoise
ball at the center while the steel is the red layer surrounding
it. This was in an air-filled 55-gallon steel drum painted with
polyurethane paint. An MC-15 joint multiplicity counter was
placed in close proximity to the steel drum with the front
panel on the right side of the drum and the main portion of
the detector on the left side.

5. Source and detector center 1 m above a 30 cm thick
concrete floor. Source center 2.7 m from 30 cm thick
concrete walls and ceiling.

The configuration had a high multiplication with keff =
0.951 ≡ M = 20.5. Because the system has no hydroge-
nous material to moderate the neutrons, the diffusion
time λ−1 ≈ 40 µs which coincides with the diffusion time
in the MC-15 joint multiplicity counter. The true detec-
tion efficiency was ε = 1.511± 0.007%.

As discussed in §IV E, the Kullback-Liebler distance
DKL was computed for the various possible values of
238U mass, keff , detection efficiency ε, and the inverse
of the neutron diffusion time λ. The Kullback-Liebler
distance is a non-symmetric measure of the difference
between two probability distributions and is always non-
negative, DKL(P‖Q) ≥ 0, a result known as Gibbs’ in-
equality. DKL(P‖Q) = 0 if and only if the measured
probability distribution P of waiting a certain about of
time between successive neutrons equals the equivalent
distribution Q calculated from, in this case, Eq. 118.

A Kullback-Liebler distance, DKL(P‖Q), closer to zero
indicates a better estimate for the parameter in question.
The ten surfaces shown (that appear stacked on top of
one another) correspond to different values of detection
efficiency ε. Note the relatively sharp canyon indicat-
ing keff ≈ 0.95. This canyon, however, is relatively flat
along 238U mass showing that our algorithm is much less
sensitive to mass compared to keff .

G. Moderation

The parameter λ is the fundamental-mode decay con-
stant of the moderator-detector assembly.11 In other
words, λ−1 is the neutron lifetime against detection. It is
the average time between when a neutron is created, dif-
fuses through the moderator, the time-of-flight to the de-
tector, diffusion in the detector, to finally being counted
by the detector. All moderator effects are accounted for
in this variable. For a 3He-based detector, bare-metal
sources have ≈ 0 diffusion time because of the lack of
moderator as well as a time-of-flight of ≈ 0 leaving only
the time for the neutrons to diffuse in the detector—
typically λ−1 ∼ 40 µs. For moderated sources, the dif-
fusion time in the moderator and the time of flight can
easily push λ−1 ≥ 100 µs.



5

0 50 100 150 200 250 300 350 400 450 500

20

40

60

M
as

s o
f 23

8 U
 (K

g)

Mass of 238U (Kg):  Converged MAP = 6.0, 90.0% Confidence Interval = [5.5 8.1]
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FIG. 5. Parameter estimates for 500 neutrons for the first HEU source using two MC-15 detectors connected together to
function as a single, larger detector: (a) Mass of 238U; (b) keff ; (c) Detection efficiency ε; (d) Inverse diffusion time λ. The plots
in the left column show the evolution of the estimate of the parameter as neutrons are counted; the x-axis is the number of
neutrons counted. In the plots in the left column, the gray bands indicate the 90% confidence intervals. The plots in the right
column are the PDFs for each parameter and the red lines highlight the 90% confidence intervals. The confidence intervals
here use the highest-density interval (HDI) method.
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FIG. 6. Parameter estimates for an ensemble of 100 runs (500 neutrons each) for the first HEU source using two MC-15 detectors
connected together to function as a single, larger detector: (a) Mass of 238U; (b) keff ; (c) Detection efficiency ε; (d) Inverse
diffusion time λ. The plots in the left column show the evolution of the estimate of the parameter as neutrons are counted; the
x-axis is the number of neutrons counted. In the plots in the left column, the gray bands indicate the 90% confidence intervals.
The plots in the right column are the PDFs for each parameter and the red lines highlight the 90% confidence intervals. The
confidence intervals here use the highest-density interval (HDI) method.

LLNL-TR-676944 31 August 2015



7

10−2 10−1 100 101 102 103 104 105 106 107
10−4

10−3

10−2

10−1
Test Data: RTO12_30cm_2MC15s_OppositeSides_2010_02_20_062202.mat

 

 
Data
Est Parameters

Estimated Parameters

 Mass : 7.6 kg
 keff = 0.881
 Efficiency = 0.023
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FIG. 7. Time interval distribution for the first source as measured by two MC-15 Joint Multiplicity Counters connected
together. The solid red line is the theoretical distribution, Eq. 125 or 126, constructed using the estimated parameters. The
blue points are the measured time interval distribution. The estimated parameters from the ensemble of 100 runs are shown in
the box.
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FIG. 8. Parameter estimates for 500 neutrons for the first HEU source using a single MC-15 detector: (a) Mass of 238U; (b)
keff ; (c) Detection efficiency ε; (d) Inverse diffusion time λ. The plots in the left column show the evolution of the estimate of
the parameter as neutrons are counted; the x-axis is the number of neutrons counted. In the plots in the left column, the gray
bands indicate the 90% confidence intervals. The plots in the right column are the PDFs for each parameter and the red lines
highlight the 90% confidence intervals. The confidence intervals here use the highest-density interval (HDI) method.
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FIG. 9. Parameter estimates for an ensemble of 100 runs (500 neutrons each) for the first HEU source using a single MC-15
detector: (a) Mass of 238U; (b) keff ; (c) Detection efficiency ε; (d) Inverse diffusion time λ. The plots in the left column show
the evolution of the estimate of the parameter as neutrons are counted; the x-axis is the number of neutrons counted. In the
plots in the left column, the gray bands indicate the 90% confidence intervals. The plots in the right column are the PDFs for
each parameter and the red lines highlight the 90% confidence intervals. The confidence intervals here use the highest-density
interval (HDI) method.
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FIG. 10. Parameter estimates for 500 neutrons for the second HEU source using two MC-15 detectors connected together to
function as a single, larger detector: (a) Mass of 238U; (b) keff ; (c) Detection efficiency ε; (d) Inverse diffusion time λ. The plots
in the left column show the evolution of the estimate of the parameter as neutrons are counted; the x-axis is the number of
neutrons counted. In the plots in the left column, the gray bands indicate the 90% confidence intervals. The plots in the right
column are the PDFs for each parameter and the red lines highlight the 90% confidence intervals. The confidence intervals
here use the highest-density interval (HDI) method.
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FIG. 11. Parameter estimates for an ensemble of 100 runs (500 neutrons each) for the second HEU source using two MC-15
detectors connected together to function as a single, larger detector: (a) Mass of 238U; (b) keff ; (c) Detection efficiency ε;
(d) Inverse diffusion time λ. The plots in the left column show the evolution of the estimate of the parameter as neutrons
are counted; the x-axis is the number of neutrons counted. In the plots in the left column, the gray bands indicate the 90%
confidence intervals. The plots in the right column are the PDFs for each parameter and the red lines highlight the 90%
confidence intervals. The confidence intervals here use the highest-density interval (HDI) method.
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FIG. 12. Parameter estimates for an ensemble of 100 runs (500 neutrons each) for the second HEU source using two MC-15
detectors connected together to function as a single, larger detector: (a) Mass of 238U; (b) keff ; (c) Detection efficiency ε;
(d) Inverse diffusion time λ. Detection efficiency was calculated independently by Monte Carlo using MCNP and the results
were used to constrain that parameter in the analysis. The plots in the left column show the evolution of the estimate of the
parameter as neutrons are counted; the x-axis is the number of neutrons counted. In the plots in the left column, the gray
bands indicate the 90% confidence intervals. The plots in the right column are the PDFs for each parameter and the red lines
highlight the 90% confidence intervals. The confidence intervals here use the highest-density interval (HDI) method.
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FIG. 13. Kullback-Liebler distance for the Monte Carlo simulation discussed in §IV E for the scenario shown in Figs. 4 or 39.
A Kullback-Liebler distance closer to zero indicates a better estimate for the parameter in question. The ten surfaces shown
(that appear stacked on top of one another) correspond to different values of detection efficiency ε. Note the relatively sharp
canyon indicating keff ≈ 0.95. This canyon, however, is relatively flat along 238U mass showing that our algorithm is much less
sensitive to mass mS compared to keff .
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II. RAPID COMPUTATION OF DISTRIBUTIONS

A. Statistical Theory of fission chains

Consider a multiplying medium at time t = 0 contain-
ing a single neutron where no neutrons have yet left. As
a fission chain evolves in time, the neutrons produced by
it may

1. do nothing,

2. leave the multiplying medium either through non-
fission absorption or leakage, or

3. go on to induce a subsequent fission thus perpetuating
the fission chain.

At time t + ∆t, the probability Pm,n for m neutrons to
remain in the system and n to have left can be developed
by considering all the possible configurations the system
can be in at time t: There could be m neutrons in the
system with n having already left, and nothing happens
during the time ∆t; at time t, there could be m + 1
neutrons in the system with n − 1 having left, and one
neutron could — with probability 1− p — get absorbed
or leak out during ∆t; there could be m+ 1− ν neutrons
in the system at time t, and during ∆t, one neutron could
— with probability p — induce a fission with probability
Cν to produce ν neutrons; there could be m+2 neutrons
in the system with n − 2 having already left at time t,
and two could get absorbed or leak out during ∆t; and
so on. The probability Pm,n (t+ ∆t) would then just be
the sum of each of these probabilities,

Pm,n (t+ ∆t) = Pm,n(t)

(
1− ∆t

τ

)m
+ (1− p)Pm+1,n−1(t) (m+ 1)

∆t

τ

+ p
∑
ν

Pm+1−ν,n(t)Cν (m+ 1− ν)
∆t

τ

+ (1− p)2Pm+2,n−2(t)

(
m+ 2

2

)(
∆t

τ

)2

+ · · · (1)

where τ is the mean neutron lifetime against leakage and
non-fission absorption. The probability p is related to

the quantities keff and multiplication M as

keff = pν (2)

M =
1

1− keff
(3)

where ν is the average number of neutrons created by a
fission.

There is no simple formula for the probabilities Pm,n,
but it is possible instead to give a formula for the sum of a
power series whose coefficients are the probabilities Pm,n
that we’re interested in.13 A generating function can be
constructed by simply multiplying the probabilities Pm,n
by xmyn and summing over m and n,

/P(t, x, y) =

∞∑
m=0

∞∑
n=0

Pm,n(t)xmyn (4)

where, throughout, the Feynman-slash notation denotes
the generating function corresponding to a probability
distribution. From Eqs. 1 and 4, the generating function
/P(t, x, y) is found to satisfy the equation12

τ
∂ /P
∂t

=
[
−x+ (1− p)y + p/C(x)

] ∂ /P
∂x

(5)

where

/C(x) =

νmax∑
ν=0

Cνx
ν . (6)

is the generating function corresponding to the probabil-
ity distribution Cν for an induced fission to produce ν
neutrons.

In the limit t → ∞, all neutrons are assumed to have
left the system. As a result, /P(t, x, y) becomes a function
only of the neutrons that escape the system,

lim
t→∞

/P(t, x, y)→ /PI(y) =

∞∑
n=0

PIny
n . (7)

The probability distribution PIn is the probability that a
fission chain, initiated by a single neutron inducing a fis-
sion, creates n neutrons. In this limit, the corresponding
generating function /PI(y) satisfies the Böhnel equation,9

B̃(/PI, y) = (1− p)y − /PI(y) + p/C
[
/PI(y)

]
= 0 . (8)

A series solution to the Böhnel equation, Eq. 8, using
Lagrange’s series formula12 is

/PI(y) = (1− p)y + yn
∞∑
k=1

Pp(k|n+ k)

k + n

∑
ν0,ν1,ν2,···

k!

ν0!ν1!ν2! · · ·
(Cν0

0 Cν1
1 Cν2

2 · · · ) (9)

where

Pp(k|n+ k) =
(k + n)!

k!n!
pk(1− p)n (10)

is the binomial distribution14 for k “sucesses” out of k+n
trials if the probability of a “success” is p, and where ν0

is the number of fissions which produce zero neutrons,
ν1 is the number of fissions which produce one neutron,
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ν2 the number of fissions which produce two neutrons,
and so on. The quantity k here has the interpretation of
the total number of fissions in the chain. The probability
distribution PIn that we want are the coefficients on yn

(Eq. 7).

B. Fourier method for computing the multiplicity
distribution for induced fission-initiated chains

The Böhnel equation9 B̃(/PI, y) is a polynomial of order
νmax in /PI with coefficients as follows:

pCνmax︸ ︷︷ ︸
νth
max

[
/PI(y)

]νmax
+ · · ·+ pC2︸︷︷︸

2nd

[
/PI(y)

]2
+ (pC1 − 1)︸ ︷︷ ︸

1st

/PI(y) + pC0 + (1− p)y︸ ︷︷ ︸
0th

= 0

(11)

The generating function /PI(y) is obtained by solving for

the root of B̃(/PI, y) at each value of y starting from
/PI(1) = 1. Again, the quantity p is the probability that
a neutron induces a fission and is related to the param-
eter keff by keff = νp, where ν is the average number of
neutrons produced by an induced fission. Though an ex-
act solution, numerical evaluation of the series requires
calculating multinomial coefficients (Eqs. 8 and 9) which
can be problematic for large n. However, since the basic
problem is calculating the roots of a low order polyno-
mial (typically less than tenth order) as a function of a
parameter (y for the generating function), we can con-
sider approaches based on numerical root extraction.

If we set y = eiθ in the generating function /PI(y), we
obtain the characteristic function for the induced neutron
multiplicities:

g(θ) = /PI

(
eiθ
)

(12)

=

∞∑
n=0

PIne
inθ . (13)

The characteristic function is periodic on the interval
−π ≥ θ < π (or any other θ interval of length 2π). The
induced multiplicities can be calculated from g(θ) using
the Fourier transform:

PIn =
1

2π

∫ π

−π
g(θ)e−inθ dθ . (14)

Furthermore, the characteristic function can be obtained
by calculating the roots of the complex Böhnel equation,

B̃(g, θ) = (1− p)eiθ − g(θ) + p/C [g(θ)] = 0 . (15)

The particular roots of physical interest lie within the
unit circle in the complex g plane (|g(θ)| ≤ 1) and include
the point g(0) = 1.

Figure 14 shows all roots of the Böhnel equation for
both the generating function /PI(y) (Eq. 8) and the char-
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FIG. 14. Roots /PI(y) of the Böhnel equation B̃(h, y) = 0
(top) and g(θ) of B(g, θ) = 0 (bottom) for 235U with keff =

0.8. The physical root B̃(h, y) = 0 lies on the real axis of the
h plane. The physical root for B(g, θ) = 0 lies within the unit
circle (dashed) on the complex g plane except for the point
g(0) = 1.

acteristic function g(θ) (Eq. 15 for 235U with keff = 0.8
corresponding to a multiplication M = 5). These are
generated by solving for the roots for each value of y or
θ, as appropriate, for a set range of y and θ values. The
number of roots is determined by the order of the poly-
nomial /C(x), e.g. seven for 235U. As the parameters y
or θ are varied, the roots change continuously and form
a root locus diagram in the complex /PI or g plane. The
physical root for /PI(y) that defines the multiplicity gen-
erating function is the root that lies along the real axis in
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FIG. 15. Roots g(θ) of the Böhnel equation B(g, θ) = 0 for
235U with keff = 1.0. The physical root lies within the unit
circle (dashed) on the complex g plane but intersects a non-
physical root, forming a double root at g = 1 when θ = 0.

the complex /PI plane. There are two points (particular
values of y) where the real root is double, near /PI = −3
and /PI = 1. The length of the curves defined by the
roots depends on the range of y (−100 ≤ y ≤ 100 in Fig.
14). The curves would extend to infinity as |y| → ∞.
This pattern of root loci does not change with different
keff .

The roots of B̃(g, θ) = 0 are periodic functions of θ
since the parameter appears as eiθ in Eq. 15. The root
locus diagram (second plot in Fig. 14) consists of seven
(for the case of 235U) closed loops, one for each root. The
root corresponding to the characteristic function g(θ) is
the loop enclosed by the unit circle. It also satisfies the
condition g(0) = 1. A second, non-physical, root lies
just outside the unit circle. As keff approaches unity, the
physical root and this second root approach one another
on the real axis until they intersect, forming a double root
at g = 1 when keff = 1 (see Fig. 15). The conditions

for a double root are B̃(g, θ) = 0 and simultaneously

∂B̃/∂g = 0. Evaluating the second condition at g = 1
and θ = 0 gives

∂B̃

∂g

∣∣∣∣∣g=1,
θ=0

= p
d/C(g)

dg

∣∣∣∣
g=1

− 1 (16)

= pν − 1 (17)

= keff − 1 . (18)

This is zero when keff = 1, proving that the point g = 1
is a double root in this limit.

After calculating the physical root g(θ) of the Böhnel
equation (Eq. 15) as a function of the parameter θ over
the range −π ≤ θ < π, we can obtain the induced mul-
tiplicity distribution (PIn, n = 0, 1, ...) by applying the
Fourier transform, Eq. 14. Figure 16 shows the real and
imaginary parts of g(θ) for three values of keff = 0.8,
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FIG. 16. Real and imaginary parts of g(θ) for keff = 0.8 (top),
keff = 0.9 (middle), and keff = 1.0 (bottom). In all cases the
region with the most rapid variation is near θ = 0. As keff

approaches unity, the real part approaches a cusp at θ = 0
and the imaginary part becomes a vertical slope.

0.9, and 1.0. Multiplicity distributions for keff = 0.8,
0.9, 0.95, and 0.975 are shown in Fig. 17. The Fourier
transform relationship between g(θ) and PIn means the
low order multiplicities (n small) depend on the overall
shape (large scales) of g(θ), while the higher order PIn

are governed by the behavior at small scales, in partic-
ular the region near θ = 0 where the curvature is high-
est. The separation of scales is especially important as
keff → 1 (high multiplications) and allows us to deter-
mine the asymptotic behavior of PIn for large n.

The curvature of g(θ) at θ = 0 can be calculated from
the second derivative of Eq. 15 with respect to θ:

∂2g

∂θ2

∣∣∣∣
θ=0

= − 1− p
1− keff

[
1 +

p(1− p)ν2

(1− keff)
2

]
. (19)

As keff approaches unity the second derivative (and cur-
vature) becomes infinite. In Fig. 16, the real part g(θ)
appears to form a cusp at θ = 0, while the imaginary
part appears to have a vertical slope. In fact, by assum-
ing that g(θ) near θ = 0 has the behavior g(θ) ∼ 1−g1θ

β

(g1 and β constants) when keff = 1, we can derive the fol-
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lowing expression for the local behavior of g(θ) around
the origin:

g(θ) ∼ 1− [1− i sgn(θ)]

√
ν − 1

ν2
|θ| , (20)

ν2 =
d/C

2
(x)

dx2

∣∣∣∣∣
x=1

, (21)

where sgn(θ) is the sign of θ. This expression has the
expected property that the second derivative at θ = 0 is
infinite. Furthermore, it confirms the numerical results
that the real part of g(θ) has a cusp and the imaginary
part has infinite slope. Since the cusp is described by
θ1/2, the Fourier coefficients PIn for large order (n� 1)
should decay as n−3/2. 15

For keff < 1, g(θ) near θ = 0 can be represented by the
first two terms of the Taylor series:

g(θ) ≈ 1 +
1

2

∂2g

∂θ2

∣∣∣∣
θ=0

. (22)

Setting the right side to zero, we can derive a “length”
scale θc:

θc =

√
−2

(
∂2g

∂θ2

∣∣∣∣
θ=0

)−1

. (23)

For θ � θc, g(θ) is smooth and continuous. For scales
greater than θc, g(θ) would appear to have the cusp dis-
continuity at θ = 0. Thus PIn for 1 � n � π/θc should
decrease approximately as n−3/2, then drop off faster for
n � π/θc. The distinction between these two regions of
asymptotic behavior would become more prominent as
keff → 1 and θc → ∞. From this, we can deduce how
the first moment of PIn diverges as the multiplication
M = (1 − keff)−1 becomes infinite. Since the PIn de-
cays rapidly for n � π/θc, we can approximate the first
moment as

∞∑
n=1

nPIn ∼ α
π/θc∑
n=1

n−1/2 , (24)

where α is some constant and the upper limit of the sec-
ond sum is understood to be the nearest integer to π/θc.
As keff → 1, the upper limit π/θc becomes infinite and
the sum diverges while maintaining the condition that
the sum of PIn is unity.

C. Number of roots of the Böhnel polynomial B̃(g, θ)
inside the unit circle

There is only one root of B(z, θ) = 0 on or within the
unit circle, z = eiφ, of the complex z plane. To show
this, we will apply Rouche’s theorem:16

Theorem (Rouche). Let U be a bounded region in the
complex plane with continuous boundary C, and let f(z)
and h(z) be two functions analytic on U (and boundary
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FIG. 17. Multiplicity distributions for induced fission of 235U
(PIn). Shown are distributions for keff = 0.8 (M = 5), 0.9
(M = 10), 0.95 (M = 20, and 0.975 (M = 40). Squares
mark the estimated transition point (π/θc) between power

law behavior n−3/2 and a more rapid decrease as predicted
by Eq. 23.

C). Then f(z) and f(z) +h(z) have the same number of
roots in U if the strict inequality

|h(z)| < |f(z)| (25)

holds on C.

We will first show there is only one root inside the unit
circle for the case θ 6= 0. Choose

f(z, θ) = (1− p)eiθ − z (26)

h(z) = p/C(z) (27)

where B(z, θ) = f(z, θ) + h(z). The magnitude of f(z)
on the unit circle is

|f(eiφ, θ)| =
√

(1− p)2 + 1− 2(1− p) cos(φ− θ) .
(28)

This has a tight lower bound of p, which is attained when
φ = θ. A tight upper bound for h(z) on the unit circle is

|h(eiφ)| = p|/C(eiφ)| ≤ p/C(|eiφ|) = p . (29)

The upper bound is attained when φ = 0. As long as
θ 6= 0 the upper bound for |h| will not coincide with
the lower bound of |f |, maintaining a strict inequality
|h(z)| < |f(z)| on the unit circle. The one root for f(z)
(z0 = (1− p)eiθ) lies inside the unit circle. Thus B(z, θ)
has only one root within the unit circle when θ 6= 0.

For the case θ = 0, the upper bound for h(z) and
the lower bound for f(z) will coincide when z = 1 (φ =
0), violating the strict inequality required for Rouche’s
theorem. Furthermore, we know B(z, 0) = 0 when z = 1,
which is on the unit circle. We can show that there are
no other roots of B(z, 0) in the unit circle by factoring
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out the known zero, i.e. let B(z, 0) = (1− z)B0(z), then

B0(z) = 1− p1− /C(z)

1− z

= 1− p
/C(1)− /C(z)

1− z

= 1− p

1− z

N∑
n=0

Cn(1− zn)

= 1− p
N∑
n=1

Cn

n−1∑
m=1

zm

= 1− p
N−1∑
m=0

zm
N∑

n=m+1

Cn . (30)

Define

f0(z) = 1 ,

h0(z) = −p
N−1∑
m=0

zm
N∑

n=m+1

Cn , (31)

and calculate an upper bound for h0(eiφ):

|h0(eiφ)| = p

∣∣∣∣∣
N−1∑
m=0

eimφ
N∑

n=m+1

Cn

∣∣∣∣∣
≤ p

N−1∑
m=0

N∑
n=m+1

Cn

≤ p
N∑
n=1

nCn

≤ p ν = keff . (32)

Thus for keff < 1 we have |h0(eiφ)| < |f0(eiφ)| = 1, and
B0(z) has no roots within the unit circle. This completes
the proof that there is one and only one root for B(z, θ)
within the unit circle for any value of θ in the range
−π ≤ θ < π.

D. Extension to the multiplicity distribution for
spontaneous fission-initiated chains

The generating function /S(z) of the sum of two inde-
pendent random variables x1 and x2 is the product of the
generating functions for x1 and x2; /S(z) = /x1(z)/x2(z).
For a compound process, the generating function of a sum
of a random number of random variables x1, x2, · · · , xn,
where n is itself a random variable with generating func-
tion /n(z), is /n

[
/S(z)

]
.

For fission chains initiated by spontaneous fission, it
becomes necessary to compute the probability distribu-
tion PSn which is the probability that a fission chain ini-
tiated by a spontaneous fission creates n neutrons. Start-
ing with the probability CSν that a spontaneous fission

creates ν neutrons, the corresponding generating func-
tion is

/CS(x) =

νmax∑
ν=0

CSνx
ν . (33)

The generating function for the number of neutrons a
spontaneous fission-initiated fission chain creates is then

/PS(y) = /CS

[
/PI(y)

]
(34)

where, in the generating function /CS(x), x→ /PI(y). The
values of the probability distribution PSn that we want
are the coefficients on yn in /PS(y), Eq. 34,

/PS(y) =

∞∑
n=0

PSny
n (35)

This relation directly translates for the characteristic
functions:

gS(θ) = /CS [g(θ)] . (36)

The multiplicity distribution for spontaneous fission-
initiated fission chains PSn is obtained from the Fourier
transform as before:

PSn =
1

2π

∫ π

−π
gS(θ)e−inθ dθ . (37)

E. Extension to number of detected neutrons

Applying the same logic developed for a compound
process again, the probabilities eIm and eSm of detecting
m of the n neutrons created by induced fission-initiated
and a spontaneous fission-initiated fission chain are cal-
culated as

/eI(y) = /PI [/ε (y)] (38)

/eS(y) = /PS [/ε (y)]

= /CS

{
/PI [/ε (y)]

}
= /CS

[
/eI (y)

]
(39)

where in the absence of detector double-pulsing, the gen-
erating function /ε(y) for a detection efficiency of ε is

/ε(y) = (1− ε) + εy (40)

For induced fission-initiated fission chains, Eq. 11 be-
comes

pCνmax︸ ︷︷ ︸
νth
max

[
/eI(y)

]νmax
+ · · ·+ pC2︸︷︷︸

2nd

[
/eI(y)

]2
+ (pC1 − 1)︸ ︷︷ ︸

1st

/eI(y) + pC0 + (1− p)εy + (1− p)(1− ε)︸ ︷︷ ︸
0th

= 0

(41)

These computations can easily be checked by compar-
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FIG. 18. The probability to detect m neutrons from a fission
chain in 235U initiated by a single neutron eIm (top plot) and
initiated by spontaneous-fissions in238U eSm (bottom plot).
Detection efficiency ε = 0.03.

ing the combinatorial moments of the eIm or eSm distri-
butions to first-principles calculations. For fission chains
initiated by a single neutron inducing a fission, the quan-
tity

RIj =

∞∑
m=j

(
m
j

)
eIm . (42)

From first-principles, it can be shown that11

RIj = εjFI



Me j = 1

M2
e

Me − 1

ν − 1
ν2 j = 2

M3
e

Me − 1

ν − 1

[
ν3 + 2

Me − 1

ν − 1
ν2

2

]
j = 3

(43)
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FIG. 19. The probability to detect m neutrons from a fission
chain in 239Pu initiated by a single neutron eIm (top plot) and
initiated by spontaneous-fissions in240Pu eSm (bottom plot).
Detection efficiency ε = 0.03.

where the escape multiplication is defined as

Me =
1− p

1− pν
(44)

and where

νµ =

∞∑
ν=µ

(
ν
µ

)
Cν =

ν(µ)

µ!
(45)

are the combinatorial moments of the neutron multiplic-
ity distribution for induced fission.

For fission chains initiated by a spontaneous fission,
the quantity

RSj =

∞∑
m=j

(
m
j

)
eSm (46)
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and from first-principles, it can again be shown that11

RSj = εjFS



MeνS1 j = 1

M2
e

[
νS2 +

Me − 1

ν − 1
νS1 ν2

]
j = 2

M3
e

[
νS3

+
Me − 1

ν − 1
(νS1 ν3 + 2νS2 ν2)

+2

(
Me − 1

ν − 1

)2

νS1 ν2
2

]
j = 3

(47)

where the combinatorial moments of the neutron multi-
plicity distribution for spontaneous fission are

νSµ =

∞∑
ν=µ

(
ν
µ

)
CSν . (48)

The neutron multiplicity distributions used for these
comparisons are shown in Table II. Results of the com-
parisons are shown in Table III. For both induced
(I) fission- and spontaneous (S) fission-initiated fission
chains, the comparisons show the ratio

∆Rj
Rj

=
RComputed
j −RFirst−Principles

j

RFirst−Principles
j

. (49)

F. Conclusions

Using the Fourier transform to calculate the probabil-
ity that a fission chain will produce n neutrons yields
very accurate results when enough terms are carried to
take the distributions out to a large n with a sufficiently
small probability.

The Fourier transform method is inherently fast be-
cause the basic problem is one of calculating the roots
of a low order polynomial (typically less than tenth or-
der) as a function of the parameter y from the generating
function. The characteristic function is obtained by com-
puting the roots of the generating function of the Böhnel
equation after the simple replacement y → eiθ. The phys-
ical roots lie within the unit circle on the complex plain.
The fission chain multiplicities can then be calculated by
taking the fast Fourier transform of the resulting char-
acteristic function which is periodic on any interval of
length 2π.

The need to take multiple terms of the Stirling series
to evaluate factorials of large order in the analytic for-
mula is quite significant. Even then, less accurate results
tend to be obtained compared to the simple, direct ap-
plication of the inherently simple and efficient Fourier

Cν CSν

235U 239Pu 238U 240Pu
(1 MeV) (1 MeV)

0 0.0237898 0.0084842 0.0798571 0.0631852
1 0.1555525 0.0790030 0.2467090 0.2319644
2 0.3216515 0.2536175 0.3538440 0.3333230
3 0.3150433 0.3289870 0.2356090 0.2528207
4 0.1444732 0.2328111 0.0772832 0.0986461

n
5 0.0356013 0.0800161 0.0104521 0.0180199
6 0.0034339 0.0155581 0.0006964 0.0020406
7 0.0004546 0.0011760
8 0.0003469

ν 2.5236703 3.0088797

ν2 2.5506884 3.7053872 —

ν3 1.3335380 2.4321410

νS1 2.0267958 2.1540000

νS2 — 1.6320733 1.8944699

νS3 0.6602522 0.8684162

TABLE II. Measured values of Cν for 235U17 and 239Pu,17

and CSν for 238U18 and 240Pu.17

Isotopes M Dist. ∆R1/R1 ∆R2/R2 ∆R3/R3

eIm −4.6× 10−8 −1.6× 10−7 −2.7× 10−7

5
eSm −4.6× 10−8 −1.5× 10−7 −2.6× 10−7

eIm −5.5× 10−8 −1.8× 10−7 −3.0× 10−7
238U 10

eSm −5.5× 10−8 −1.7× 10−7 −2.9× 10−7

driving
eIm −6.0× 10−8 −1.9× 10−7 −3.4× 10−7

235U 20
eSm −6.0× 10−8 −1.8× 10−7 −3.2× 10−7

eIm −6.3× 10−8 −2.1× 10−7 −5.4× 10−7

40
eSm −6.3× 10−8 −2.0× 10−7 −4.5× 10−7

eIm 3.6× 10−8 1.2× 10−7 1.9× 10−7

5
eSm 3.6× 10−8 1.1× 10−7 1.8× 10−7

eIm 4.3× 10−8 1.3× 10−7 2.2× 10−7
240Pu 10

eSm 4.3× 10−8 1.3× 10−7 2.2× 10−7

driving
eIm 4.6× 10−8 1.4× 10−7 1.8× 10−7

239Pu 20
eSm 4.6× 10−8 1.4× 10−7 2.1× 10−7

eIm 4.7× 10−8 1.2× 10−7 −6.5× 10−7

40
eSm 4.8× 10−8 1.3× 10−7 9.4× 10−7

TABLE III. Comparison of the first three moments of the
calculated distributions eIm and eSm to first-principles com-
putations. The quantity ∆Rj = RComputed

j −RFirst−Principles
j .

In all cases, the distributions were carried out to m such that
eIm > 10−15 and eSm > 10−15. Detection efficiency was taken
to be ε = 0.03.
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approach. It is fairly obvious that the Fourier method
will always beat out the direct evaluation approach in
any fair speed comparison. The error of the Fourier ap-
proach is also easier to control since it comes down to
accurate root finding for low order polynomials which is
a well-understood numerical problem.

The probability distribution for a fission chain initi-
ated by a spontaneous fission to produce n neutrons is
obtained by modifying the generating function of the
Böhnel equation to account for a compound process. The
same logic applies to calculating probability distributions
for the number of detected neutrons as well as the situa-
tion when the neutrons from a spontaneous fission don’t
all make it to the multiplying medium. Distributions for
detected neutrons are considerably faster to compute as
the detection efficiency makes it necessary to carry far
fewer terms.

III. BACKGROUND NEUTRONS

A. Introduction

Background neutrons often show correlations in time
— i.e. a single event (usually a remnant from a high-
energy cosmic ray air shower) can create many neutrons.
A multiplicity distribution specifies the probability of
counting a given number of neutrons within a randomly
triggered time gate of a given duration T . A statisti-
cal model of correlated background neutrons can be con-
structed from a measured multiplicity distribution.

A multiplicity distribution is made by breaking the
observation time up into successive randomly-triggered
time gates and counting the number of neutrons detected
within each. Suppose in an experiment, N time gates of
duration T were examined, and let Bn(T ) be the number
of those time gates in which n neutrons were detected.
So for example, suppose that during the first time gate,
four neutrons were counted; B4 would be incremented by
one. During the next time gate, say two neutrons were
counted; B2 would be incremented by one, and so on
for all N time gates. In this way, the count distribution
Bn(T ) is built up. The probability distribution bn(T ) ≈
Bn(T )/N for N ≫ 1.

The total probability to detect n neutrons is the gen-
eralized Poisson distribution,12

bn =
∑

∑
kmk=n

[
n∏
k=1

(
Λmkk
mk!

)]
e−(

∑∞
k=1 Λk) (50)

where Λk(T ) is the average rate of detecting k neutrons
from a single event within time T .10 There is no simple
formula for the probabilities bn in terms of the average
number of instances of counting k neutrons from a sin-
gle event Λk, but it is possible instead to give a very
concise formula for the sum of a power series whose co-
efficients are the probabilities bn that we’re interested
in.13 A generating function can be constructed by simply

multiplying the probabilities bn by zn and summing over
n,10,12

/b(z) =

∞∑
n=0

znbn(T ) (51)

= e−(
∑∞
k=1 Λk)

[
1 + zΛ1 + z2

(
Λ2

1

2!
+ Λ2

)
+ · · ·

]
= e−(

∑∞
k=1 Λk)

×

1 +

 ∞∑
j=1

zjΛj

+
1

2!

 ∞∑
j=1

zjΛj

2

+ · · ·


= e−(

∑∞
k=1 Λk)e(

∑∞
j=1 z

jΛj)

= b0e
/Λ (52)

where, throughout, the Feynman-slash notation denotes
the generating function corresponding to a distribution.

B. Background Measurement

A background measurement was made using the
Large Epithermal Multiplicity Counter19–22 (LEMC)—
a high-efficiency well counter consisting of a high-density
polyethylene (HDPE) annulus 85.8 cm in diameter and
87.8 cm in height. The HDPE houses 126 3He tubes 2.54
cm in diameter and 76.2 cm in length.

A total of 3,926,094 background neutrons were counted
over 497,409.6 seconds (5.75 days). Multiplicity distri-
butions bn(T ) for T = 1, 2, 3, · · · , 512 µs were made
using the time-binning structure shown in Fig. 21. The
multiplicity distribution bn(512µs) is shown in Fig. 25.
The second moments, Y2F(T ), are shown in Fig. 24.
The waiting time distribution for background neutrons
is shown in Fig. 28.

C. Determining Background Parameters from Measured
Data

The Average Number of Instances of Detecting k Neutrons
from a Single Event

If the multiplicity distribution bn(T ) is known, the av-
erage number of instances of detecting k neutrons from a
single event within time gate T , Λk(T ), can be computed.
Starting with the generating function for the multiplicity
distribution, Eq. 52, taking the log of both sides,

log[/b(z)] = log b0 + /Λ (53)

and expanding the left-hand side around b0 gives(
/b − b0

)
b0

−
(
/b − b0

)2
2b20

+

(
/b − b0

)3
3b30

− · · · = /Λ (54)
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The generating function for Λk can then readily be seen
to be

/Λ =

∞∑
k=1

(−1)k−1

(
/b − b0

)k
kbk0

=

∞∑
k=1

(−1)k−1

kbk0

( ∞∑
n=1

znbn

)k
(55)

If instead the count distribution with N time gates,
Bn(T ) = Nbn(T ), is known, Eq. 55 requires no modifi-
cation to compute Λk(T ) other than the simple replace-
ment of bn(T ) with Bn(T ),

/Λ =

∞∑
k=1

(−1)k−1

kBk0

( ∞∑
n=1

znBn

)k
(56)

The variance on the Λk(T ) is then found by taking the
derivative of this generating function (Eq. 56) with re-
spect to Bn(T ),

∂/Λ

∂Bn
=

∞∑
k=1

(−1)k−1

Bk0

( ∞∑
n=1

znBn

)k−1( ∞∑
n=1

zn

)

−
∞∑
k=1

(−1)k−1

Bk+1
0

( ∞∑
n=1

znBn

)k
(57)

=

∞∑
k=1

zkDΛk (58)

where DΛk is a row vector from k = 1 to kmax. The
variance on Λk(T ) can then be written

σ2
Λk

= DΛk V DT
Λk

(59)

where the superscript T denotes transpose and where the
covariance matrix V is

Vmn =


−BmBn

N
m 6= n

Bn

(
1− Bn

N

)
m = n

(60)

Rates for Detecting Multiple Neutrons From the Same
Event

Consider an event which produces n neutrons. The
probability of detecting exactly m neutrons out of the
possible n neutrons, if the probability of detection is ε, is
just the binomial distribution,14

Pε(m|n) =

(
n
m

)
εm(1− ε)n−m (61)

If Pn is the probability that an event creates n neu-

trons, the probability of detecting m neutrons from such
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FIG. 20. The average number of instances of detecting k neu-
trons from a single event within time gate T as computed from
multiplicity histograms of background neutrons measured by
a high-efficiency well counter over 497,409.6 seconds.

an event is therefore the product of these probabili-
ties summed over all the possible ways of detecting m
neutrons,12

em(ε) =

∞∑
n=m

PnPε(m|n)

=

∞∑
n=m

Pn
(
n
m

)
εm(1− ε)n−m (62)

The rate rm of detecting m neutrons from a single
event is then the rate at which events are initiated FInit

times this probability,

rm = FInitem(ε) (63)

If measured background count distributions Bn(T ) for
multiple values of T are available, then Λk(T ), and the
respective variances σ2

Λk
, can be calculated from Eqs. 56

– 59. An example is shown is Fig. 20. The objective
then is to calculate the rates rm that characterize the
measured background.

The average number of instances of detecting k neu-
trons from a single event within time gate T is defined
as

Λk(T ) =

∞∑
n=k

Pn
n∑

m=k

Pε(m|n)∆mk (64)

The term ∆mk is defined as
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∆mk =

(
m
k

)
∫ 0

−∞

[∫ T

0

e−λ(t−s)λ dt

]k [
1−

∫ T

0

e−λ(t−s)λ dt

]m−k
FInit ds

+

∫ T

0

[∫ T

s

e−λ(t−s)λ dt

]k [
1−

∫ T

s

e−λ(t−s)λ dt

]m−k
FInit ds

 (65)

=
FInit

λ

(
m
k

)
B[(1− e−λT ); k, m− k] (66)

and is the probability of detecting k out of the total m
detected neutrons within the time gate T and λ is the
inverse of the neutron diffusion time.10 ∆mk is just a
binomial distribution where the first term accounts for
neutrons created before the time gate T and the second
term accounts for neutrons created during the time gate
T . The integrals evaluate to an incomplete Beta function
B(z; a, b).23

Let us define

ψnm = PnPε(m|n) (67)

Rewriting Λk(T ) in terms of ψnm and ∆mk,

Λk(T ) =

∞∑
n=k

n∑
m=k

ψnm∆mk (68)

If we write out the terms in Λk(T ) explicitly, we see a
pattern:

Λ1(T ) = ψ11∆11 +

ψ21∆11 + ψ22∆21 +

ψ31∆11 + ψ32∆21 + ψ33∆31 + · · ·
Λ2(T ) = ψ22∆22 +

ψ32∆22 + ψ33∆32 + · · ·
Λ3(T ) = ψ33∆33 + · · ·

... = · · · (69)

The em(ε), Eq. 62, can also be written in terms of ψnm
as

em(ε) =

∞∑
n=m

ψnm (70)

Writing out em(ε) explicitly:

e1(ε) = ψ11 + ψ21 + ψ31 + · · ·
e2(ε) = ψ22 + ψ32 + · · ·
e3(ε) = ψ33 + · · · (71)

... = · · ·

We can now see that Λk(T ) can easily be written in terms

of em

Λ1(T ) = e1∆11 + e2∆21 + e3∆31 + · · ·
Λ2(T ) = e2∆22 + e3∆32 + · · ·
Λ3(T ) = e3∆33 + · · · (72)

... = · · ·

This can be written as a matrix equation with the col-
umn vector Λk equal to the matrix ∆mk multiplying the
column vector em,

Λ1

Λ2

Λ3

...

 =


∆11 ∆21 ∆31 · · ·

0 ∆22 ∆32 · · ·
0 0 ∆33 · · ·
...

...
...

. . .




e1

e2

e3

...


Λ = ∆e (73)

Now let us define ∇mk such that

∆mk = FInit∇mk (74)

and rewrite Eq. 73 in terms of ∇mk,

Λ = FInit∇e (75)

= ∇r (76)

where the vector r ≡ rm was defined above in Eq. 63.
The matrix ∇ is defined as

∇mk =
1

λ

(
m
k

)
B[(1− e−λT ); k, m− k] (77)

We can get the needed rates rm by multiplying both
sides of Eq. 76 from the left by ∇−1,

r = ∇−1Λ (78)

The matrix ∇ is a function of T and λ; λ−1 is the neu-
tron lifetime against detection. This time includes ther-
malization in or near the medium in which the neutron
was created, time of flight to the detector, and diffusion
in the detector prior to being counted.
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Neutron Lifetime Against Detection λ−1

The quantity λ can be determined from the count
distributions Bn(T ) by fitting the second moments
Y2F (T ).11

The rate of counting j neutrons all coming from the

same fission event can be determined by computing the
combinatorial moments of the Λk(T ),

Yj(T ) =

∞∑
k=j

(
k
j

)
Λk(T ) (79)

It can be shown that an explicit form for Yj(T ) is

Yj(T ) =

∞∑
n=j

Pn
(
n
j

)
εjFInit

{(
1− e−λT

)j
λj

+ T − 1

λ

j−1∑
n=0

B[(1− e−λT ); j − n, 1]

}
(80)

where, again, B(z; a, b) is the incomplete beta
function.23 We can define the leading terms to be

Rj =

∞∑
n=j

Pn
(
n
j

)
εjFInit (81)

resulting in11

Y1(T ) = R1T (82)

Y2(T ) = R2

(
T − 1− e−λT

λ

)
(83)

It is then convenient to define

Y2F =
Y2

Y1
(84)

R2F =
R2

R1
(85)

Applying Eqs. 82 and 83, the quantity of interest is found
to be8,11,24,25

Y2F(T ) = R2F

(
1− 1− e−λT

λT

)
(86)

To extract the rates Yj(T ) experimentally from a mea-
sured count distribution Bn(T ) ≈ Nbn(T ) for N ≫ 1
randomly-triggered time gates of length T requires the
combinatorial moments of the count distribution,

Mj(T ) =
1

N

∞∑
n=j

(
n
j

)
Bn(T ) (87)

The Mj for j = 1, 2 expressed in terms of the Λk are

M1 =

∞∑
k=1

(
k
1

)
Λk (88)

= Y1 (89)

M2 =

∞∑
k=2

(
k
2

)
Λk +

1

2!

[ ∞∑
k=1

(
k
1

)
Λk

]2

(90)

= Y2 +
Y 2

1

2!
(91)

Solving for Y1 and Y2 in terms of M1 and M2 yields

Y1 =M1 (92)

Y2 =M2 −
M2

1

2!
(93)

leading to

Y2F(T ) =
M2(T )

M1(T )
− M1(T )

2!
(94)

As a practical matter, the combinatorial moments Mj

of the counting distribution Bn(T ) are easy to compute
from Eq. 87.

The quantities λ and R2F are determined by minimiz-
ing

χ2 = E2F
T W−1 E2F (95)

where the superscript T denotes transpose and where the
error vector E2F is defined as

E2F =
M2(Ti)

M1(Ti)
− M1(Ti)

2!
−R2F

(
1− 1− e−λTi

λTi

)
(96)

and is understood to be a column vector corresponding
to the values for Ti. The covariance matrix W depends
on how the different values of T are chosen.

To compute the statistical errors on Y2F, we define the
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FIG. 21. Time-binning structure used in the background mea-
surement. In this illustration, time runs from left to right
and covers a total of 20 µs. The dots represent neutron ar-
rival times. Here, time is divided into cycles of length 5 µs,
so there are four cycles shown. The Bn(T = 1 µs) distri-
bution is constructed by counting the number of cycles with
n = 0, 1, 2, 3 · · · neutrons in the first µs. In this example,
there were three cycles where one neutron was counted in the
first 1 µs and one cycle where two neutrons were counted in
the first 1 µs. The Bn(T = 2 µs) distribution is constructed
by counting the number of cycles with n = 0, 1, 2, 3 · · · neu-
trons in the first 2 µs. In this example, there were two cycles
where one neutron was counted in the first 2 µs and two cy-
cles where three neutrons were counted in the first 2 µs. And
so on.

row vector

D2F =
∂Y2F

∂Bn
(97)

which are of length nmax. It is straight forward to show
that

∂Y2F

∂Bn
=

(
n
2

)
1

M1N
− nY2F

M1N
− n

N
(98)

The variance on Y2F is then calculated in the usual way
as

σ2
Y2F

= D2F V D2F
T (99)

where the superscript T denotes transpose and where V
is defined in Eq. 60.

The covariance matrix W in Eq. 95 depends on the
structure of the time gates. For the measurement of back-
ground neutrons here, we divided the observation time up
into cycles which contain a single example of each time
interval T = 1, 2, 3, · · · , 512 µs. This is illustrated in
Fig. 21. Because of this time-binning structure, the data
used to generate the Bn(Ti) distribution gets partially
reused to generate the Bn(Tj) distribution (Ti 6= Tj).
The covariance matrix W in Eq. 95 is therefore not di-
agonal.

A Monte Carlo simulation using the methods discussed
below in §III D was used to estimate the correlation be-
tween values of Y2F(Ti) and Y2F(Tj). A thousand one-
hour simulations of 10 ng of 252Cf configured such that
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FIG. 22. Estimated correlation matrix ρij calculated from
1,000 1-hour Monte Carlo simulations of 10 ng of 252Cf with
diffusion time λ−1 = 100 µs and detection efficiency ε = 0.03.
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FIG. 23. Correlation matrix ρij = T</T> with T< =
min(Ti, Tj) and T> = max(Ti, Tj).

the diffusion time λ−1 = 100 µs and the detection effi-
ciency ε = 3% were used to calculate a correlation matrix.
The resulting correlation matrix ρij is shown in Fig. 22.
This estimate indicated that the correlation matrix was
well approximated by

ρij =
T<
T>

(100)

T< = min (Ti, Tj) (101)

T> = max (Ti, Tj) (102)
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FIG. 24. Y2F(T ) as computed from multiplicity histograms
of background neutrons measured by a high-efficiency well
counter over 497,409.6 seconds.

and is shown for comparison in Fig. 23. Given the cor-
relation matrix ρij , the covariance matrix was then easy
to calculate:

Wij = ρijσY2F
(Ti)σY2F

(Tj) (103)

Sparse Sampling

A problem with Eq. 56 appears when this procededure
is put into practice. The computation of Λn(T ) poses
no problems as long as Bn(T ) > 0. However, for count
distributions where sparse sampling causes Bn(T ) = 0 for
certain values of n interspersed with Bn(T ) 6= 0, some of
the resulting values of Λn(T ) can become negative which
is unphysical.

For the sparsely-sampled region of bn(T ), we propose
taking an average. Suppose the sparsely-sampled region
of bn(T ) runs from n = x to n = y, i.e. Bn(T ) ≥ 0 for
x ≤ n ≤ y where x is the smallest value of n for which
Bn(T ) = 0 and where y is the largest value of n for which
Bn(T ) > 0. For N � 1 and Bn(T ) ≈ 1, Λn ≈ Bn/N .
Therefore the average number of instances of detecting
x ≤ n ≤ y neutrons from a single event within a time
gate T can be taken as

Λx≤n≤y ≈
1

N

y∑
n=x

Bn(T ) (104)

The value for Λx≤n≤y then needs to be placed into the
context of the larger vector Λn in a sensible way. Let n̄
be the average number of neutrons detected in time gate
T over the sparsely-sampled region of the count distribu-

tion,

n̄ =

∑y
n=x nBn(T )∑y
n=xBn(T )

(105)

An obvious choice would be to place Λx≤n≤y at the in-
dex n̄. However, n̄ is not in general an integer. We pro-
pose simply rounding to the nearest integer, bn̄e, thus
Λx≤n≤y → Λbn̄e. The corresponding matrix element
needed to compute the rate rbn̄e is then ∇bn̄ebn̄e.

We then propose distributing the rate rbn̄e evenly
across the sparsely-sampled region x ≤ n ≤ y,

rm =
rbn̄e

y − x+ 1
x ≤ m ≤ y (106)

This seems to give good results that compare well with
the data as can be seen in Figs. 25 and 28 (blue circles).
In Fig. 25, note that the high-multiplicity tail of the
distribution is well-reproduced.
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FIG. 25. Data vs. a Monte Carlo simulation for the multiplic-
ity distribution bn(512µs). Parameters used in the simulation
were computed using the methods detailed in §III C from mul-
tiplicity histograms of 3,926,094 background neutrons mea-
sured by a high-efficiency well counter over 497,409.6 seconds.
The Monte Carlo simulation used the methods discussed in
§III D.

D. Monte Carlo Methods for Time-Correlated Neutrons

Creating Poisson-Distributed Random Numbers26

In general, a probability density function f(x) on the
range 0 < x <∞ has a corresponding cumulative distri-
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FIG. 26. Probability to count the (n+1)th (i.e. next) random
event as a function of total waiting time t in units of r−1.

bution function

F (a) =

∫ a

0

f(x) dx (107)

which expresses the probability that x ≤ a. If a is cho-
sen with probability density f(a), then the integrated
probability up to point a, F (a), is itself a random vari-
able which will occur with uniform probability density
on [0, 1],

u = F (a) (108)

We can thus find a unique x chosen from the probability
density function f(x) for a given u by

x = F−1(u) (109)

The Poisson distribution gives the probability of count-
ing n random events occurring at a rate of r per unit
time during a measurement interval t. The probability
of counting the (n+ 1)th random event after waiting an
amount of time t is just the cumulative distribution func-
tion F of the Poisson distribution,

F (t) = r

∫ t

0

(rx)ne−rx

n!
dx

= 1− r
∫ ∞
t

(rx)ne−rx

n!
dx

= 1− Γ (n+ 1, rt)

n!
(110)

This is shown in Fig. 26. For a process that generates
events as a function of time according to a Poisson dis-
tribution, the probability distribution of waiting times
from an arbitrary starting point (which may be some
particular event) to the kth event, where we have defined
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FIG. 27. Probability to count n = k − 1 events as a function
of measurement interval t in units of r−1.

k = n+ 1, is then obtained by differentiating the cumu-
lative distribution function F (Eq. 110) with respect to
t,

dF

dt
=

d

dt

(
1− Γ (k, rt)

(k − 1)!

)
=
rktk−1e−rt

(k − 1)!

=
rktk−1e−rt

Γ(k)
= γ(t; r, k) (111)

This is the gamma distribution and is shown in Fig. 27.
The time-to-next event corresponds to k = 1 and is called
the exponential distribution.

If we want to generate waiting times δ between random
events, we simply apply the above technique to the ex-
ponential distribution, γ(t; r, 1) = re−rt (Eq. 111 above
with k → 1). Starting with a random number u which is
uniformly distributed on [0, 1],

u = F (δ) =

∫ δ

0

γ(t; r, 1) dt

=

∫ δ

0

re−rt dt

= 1− e−r δ (112)

δ = F−1(u) = − lnu

r
(113)

Time-Correlated Neutron Arrival Times

Consider an event which produces n neutrons. The
neutron multiplicity Pn is the probability that an event
generates n neutrons. The probability of detecting ex-
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actly m neutrons out of a possible n neutrons, if the
probability of detection is ε, is just the binomial distri-
bution, Eq. 61. The probability of detecting m neutrons
from such an event is Eq. 62. The rate rm of detecting
m neutrons from a single event is then Eq. 63.

These rates rm can be used to generate waiting times
between events from which m neutrons were detected.
From Eq. 113, a list of times is generated as

tm,i = δm,i + tm,i−1

= − lnui
rm

+ tm,i−1 (114)

with tm,0 = 0. Iteration is stopped once tm,i exceeds the
observation time.

The neutron does not get detected the instant it is
created, however. The neutron lifetime against detec-
tion λ−1 represents the time scale for the neutron to
move from the site of creation out to the detector.
Thus, for each tm,i, a second list of waiting times τj ,

j = 1, 2, · · · , m must be generated according to

τj = − lnuj
λ

(115)

The neutron detection times tm,k are thus

tm,k = tm,i + τj (116)

k = m(i− 1) + j (117)

To produce the final list of detection times, all the tm,k
must simply be combined and sorted. In this way, time-
tagged neutron data can be produced quickly.

E. Time Interval Distributions

For multiplying nuclear material sources, the waiting
time between successive neutrons is27

I0∆T =
1

R1

∞∑
m=1

FSeSm

(
m−1∑
k=0

e−kλT

)
n0(T )R1∆T︸ ︷︷ ︸

Next neutron from different fission chain

+
1

R1

∞∑
m=2

FSeSm

(
m−1∑
k=1

ke−kλT

)
b0(T )λ∆T︸ ︷︷ ︸

Next neutron from same fission chain

(118)

The term FS is the rate of spontaneous fissions,

FS =
NA

A

ln 2

t1/2

t1/2

tSF
1/2

mS (119)

where NA is Avogadro’s number, A is the atomic mass,
mS is the mass of the spontaneously fissioning isotope,
t1/2 is the half-life, and tSF

1/2 is the half-life against sponta-

neous fission. The distribution eSm is the probability of

detectingm neutrons from a spontaneous fission-initiated
fission chain, b0 is the probability of counting zero neu-
trons in a randomly-triggered time gate of duration T ,
and n0 is the probability of counting zero neutrons in a
time gate of duration T triggered by a neutron count.

Eq. 118 works just as well for background neutrons
from cosmic ray air showers with the trivial replacement
FSeSm → rBkg

m for m ≥ 1 from Eq. 78,

IBkg
0 ∆T =

1

RBkg
1

∞∑
m=1

rBkg
m

(
m−1∑
k=0

e−kλBkgT

)
nBkg

0 (T )RBkg
1 ∆T︸ ︷︷ ︸

Next neutron from different air shower

+
1

RBkg
1

∞∑
m=2

rBkg
m

(
m−1∑
k=1

ke−kλBkgT

)
bBkg
0 (T )λBkg∆T︸ ︷︷ ︸

Next neutron from same air shower

(120)

In Eqs. 118 and 120, for both terms, the first count
occurs at t = 0 and a second count occurs at t = T where
T is the time interval between neutrons. The logic of the
first term is:

1. Probability that the first count is from a fission chain
but no count from the same chain happens within time

T : 1/R1

∑∞
m=1 FSem

(∑m−1
k=0 e−kλT

)
2. Probability of no counts from a fission chain in time T

following a trigger count at T = 0: n0(T )

3. Probability that a neutron from a fission chain is
counted within ∆T : R1 ∆T

The logic of the second term is:

1. Probability that the first count is from a fission chain
and another count from the same chain escapes detec-

tion until time T : 1/R1

∑∞
m=2 FSem

(∑m−1
k=1 ke−kλT

)
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2. Probability of no counts from a fission chain in time
T : b0(T )

3. Probability that a diffusing neutron from a fission
chain is counted within ∆T : λ∆T

For Eq. 120, rBkg
m can be determined from a mea-

sured background count distribution as described above
in §III C. The terms27

bBkg
0 (T ) = e−(

∑∞
k=1 ΛBkg

k ) (121)

nBkg
0 (T ) = bBkg

0 (T )
1

RBkg
1

∞∑
m=1

rBkg
m

(
m−1∑
k=0

e−kλBkgT

)
(122)

F. Fission Chains Combined With Correlated Backgrounds

A complication arrises if a correlated background is
combined with fission chains from a multiplying source.
Instead of the time interval distribution having only two
terms, there will be six terms that take into account the
following possibilities:

1. The first neutron is from a fission chain and the second
neutron is from a different fission chain;

2. The first neutron is from a fission chain and the second
neutron is from the same fission chain;

3. The first neutron is from an air shower and the second
neutron is from a different air shower;

4. The first neutron is from an air shower and the second
neutron is from the same air shower;

5. The first neutron is from an air shower and the second
neutron is from a fission chain;

6. The first neutron is from a fission chain and the second
neutron is from an air shower.

I0∆T =
1

RTotal
1

∞∑
m=1

FSem

(
m−1∑
k=0

e−kλT

)
n0b

Bkg
0 R1∆T︸ ︷︷ ︸

First from fission chain; next from different fission chain

+
1

RTotal
1

∞∑
m=2

FSem

(
m−1∑
k=1

ke−kλT

)
b0b

Bkg
0 λ∆T︸ ︷︷ ︸

First from fission chain; next from same fission chain

+
1

RTotal
1

∞∑
m=1

rBkg
m

(
m−1∑
k=0

e−kλBkgT

)
nBkg

0 b0R
Bkg
1 ∆T︸ ︷︷ ︸

First from air shower; next from different air shower

+
1

RTotal
1

∞∑
m=2

rBkg
m

(
m−1∑
k=1

ke−kλBkgT

)
bBkg
0 b0λBkg∆T︸ ︷︷ ︸

First from air shower; next from same air shower

+
1

RTotal
1

∞∑
m=1

rBkg
m

(
m−1∑
k=0

e−kλBkgT

)
nBkg

0 b0R1∆T︸ ︷︷ ︸
First from air shower; next from fission chain

+
1

RTotal
1

∞∑
m=1

FSem

(
m−1∑
k=0

e−kλT

)
n0b

Bkg
0 RBkg

1 ∆T︸ ︷︷ ︸
First from fission chain; next from air shower

(123)

where RTotal
1 = R1 +RBkg

1 .

The logic of the first term is:

1. Probability that the first count is from a fission chain
but no count from the same chain happens within time

T : 1/RTotal
1

∑∞
m=1 FSem

(∑m−1
k=0 e−kλT

)
2. Probability of no counts from a fission chain within

time T following a trigger count at T = 0: n0(T )

3. Probability of no counts from an air shower within time

T : bBkg
0 (T )

4. Probability that a neutron from a fission chain is
counted within ∆T : R1 ∆T

The logic of the second term is:

1. Probability that the first count is from a
fission chain and another count from the
same chain escapes detection until time T :
1/RTotal

1

∑∞
m=2 FSem

(∑m−1
k=1 ke−kλT

)
2. Probability of no counts from a fission chain within

time T : b0(T )

3. Probability of no counts from an air shower within time

T : bBkg
0 (T )
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FIG. 28. Time interval distribution for 3,926,094 background
neutrons (blue circles) as measured by a high-efficiency well
counter over 497,409.6 seconds. Time interval distribution
for fission chains from a notional multiplying highly-enriched
uranium source with keff = 0.9 and neutron diffusion time
λ−1 = 100 µs driven by the spontaneous fissions from 25 kg
of 238U and observed by a neutron multiplicity counter with
detection efficiency ε = 0.03 (black squares). Time inter-
val distribution for both fission chains from the multiplying
HEU and the correlated background (red triangles). The cor-
responding solid lines are the theoretical distributions, Eq.
120, Eq. 118, and Eq. 123 respectively.

4. Probability that a diffusing neutron from a fission
chain is counted within ∆T : λ∆T

The logic of the third term is:

1. Probability that the first count is from an air shower
but no count from the same air shower happens within

time T : 1/RTotal
1

∑∞
m=1 r

Bkg
m

(∑m−1
k=0 e−kλBkgT

)
2. Probability of no counts from an air shower within time

T following a trigger count at T = 0: nBkg
0 (T )

3. Probability of no counts from a fission chain within
time T : b0(T )

4. Probability that a neutron from an air shower is

counted within ∆T : RBkg
1 ∆T

The logic of the fourth term is:

1. Probability that the first count is from an
air shower and another count from the same
air shower escapes detection until time T :
1/RTotal

1

∑∞
m=2 r

Bkg
m

(∑m−1
k=1 ke−kλBkgT

)
2. Probability of no counts from an air shower within time

T : bBkg
0 (T )

3. Probability of no counts from a fission chain within
time T : b0(T )

4. Probability that a diffusing neutron from an air shower
is counted within ∆T : λBkg ∆T

The logic of the fifth term is:

1. Probability that the first count is from an air shower
but no count from the same air shower happens within

time T : 1/RTotal
1

∑∞
m=1 r

Bkg
m

(∑m−1
k=0 e−kλT

)
2. Probability of no counts from an air shower within time

T following a trigger count at T = 0: nBkg
0 (T )

3. Probability of no counts from a fission chain within
time T : b0(T )

4. Probability that a neutron from a fission chain is
counted within ∆T : R1 ∆T

The logic of the sixth term is:

1. Probability that the first count is from a fission chain
but no count from the same chain happens within time

T : 1/RTotal
1

∑∞
m=1 FSem

(∑m−1
k=0 e−kλT

)
2. Probability of no counts from a fission chain within

time T following a trigger count at T = 0: n0(T )

3. Probability of no counts from an air shower within time

T : bBkg
0 (T )

4. Probability that a neutron from an air shower is

counted within ∆T : RBkg
1 ∆T

Equation 123 can be simplified by combining some of
the terms. If the first neutron is from a fission chain, the
two possibilities that the next neutron is from a different
fission chain or the next neutron is from an air shower can
be combined. Similarly, if the first neutron is from an air
shower, the two possibilities that the next neutron is from
a different air shower or the next neutron is from a fission
chain can be combined. Letting RTotal

1 = R1+RBkg
1 gives
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I0∆T =
1

RTotal
1

∞∑
m=1

FSem

(
m−1∑
k=0

e−kλT

)
n0b

Bkg
0 RTotal

1 ∆T︸ ︷︷ ︸
First from fission chain; next from different chain or air shower

+
1

RTotal
1

∞∑
m=2

FSem

(
m−1∑
k=1

ke−kλT

)
b0b

Bkg
0 λ∆T︸ ︷︷ ︸

First from fission chain; next from same fission chain

+
1

RTotal
1

∞∑
m=1

rBkg
m

(
m−1∑
k=0

e−kλBkgT

)
nBkg

0 b0R
Total
1 ∆T︸ ︷︷ ︸

First from air shower; next from different shower or fission chain

+
1

RTotal
1

∞∑
m=2

rBkg
m

(
m−1∑
k=1

ke−kλBkgT

)
bBkg
0 b0λBkg∆T︸ ︷︷ ︸

First from air shower; next from same air shower

(124)

Time-correlated neutrons from a notional multiplying highly-enriched uranium source with keff = 0.9 and neutron
diffusion time λ−1 = 100 µs driven by the spontaneous fissions from 25 kg of 238U and observed by a neutron
multiplicity counter with detection efficiency ε = 0.03 were simulated using the methods described in §III D. The
distribution of waiting times between neutron arrivals is shown in Fig. 28 (black squares).

The simulated neutrons were combined with the measured background neutrons by combining the two lists of
neutron arrival times and sorting. The distribution of waiting times between neutron arrivals for the combination of
HEU + background is shown in Fig. 28 (red triangles).

G. Fission Chains Combined With an External Random Source

If the external source is not a correlated background but rather a random source, Eq. 123 simplifies. Letting
RTotal

1 = R1 +RRnd
1 gives

I0∆T =
1

RTotal
1

∞∑
m=1

FSem

(
m−1∑
k=0

e−kλT

)
n0e
−RRnd

1 R1∆T︸ ︷︷ ︸
First from fission chain; next from different fission chain

+
1

RTotal
1

∞∑
m=2

FSem

(
m−1∑
k=1

ke−kλT

)
b0e
−RRnd

1 λ∆T︸ ︷︷ ︸
First from fission chain; next from same fission chain

+
1

RTotal
1

RRnd
1 e−R

Rnd
1 b0R

Rnd
1 ∆T︸ ︷︷ ︸

First from random source; next from random source

+
1

RTotal
1

RRnd
1 e−R

Rnd
1 b0R1∆T︸ ︷︷ ︸

First from random source; next from fission chain

+
1

RTotal
1

∞∑
m=1

FSem

(
m−1∑
k=0

e−kλT

)
n0e
−RRnd

1 RRnd
1 ∆T︸ ︷︷ ︸

First from fission chain; next from random source

(125)

Equation 125 can be simplified by combining some of the terms. If the first neutron is from a fission chain, the two
possibilities that the next neutron is from a different fission chain or the random source can be combined. Similarly,
if the first neutron is from the random source, the two possibilities that the next neutron is from the random source
or a fission chain can also be combined.

I0∆T =
1

RTotal
1

∞∑
m=1

FSem

(
m−1∑
k=0

e−kλT

)
n0e
−RRnd

1 RTotal
1 ∆T︸ ︷︷ ︸

First from fission chain; next from different chain or random source

+
1

RTotal
1

∞∑
m=2

FSem

(
m−1∑
k=1

ke−kλT

)
b0e
−RRnd

1 λ∆T︸ ︷︷ ︸
First from fission chain; next from same fission chain

+
1

RTotal
1

RRnd
1 e−R

Rnd
1 b0R

Total
1 ∆T︸ ︷︷ ︸

First from random source; next from fission chain or random source

(126)

H. Conslusions

We have extended the theory for the probability dis-
tributions of the spacing between neutron counts from

fissioning systems27 to correlated background neutron
bursts from cosmic ray air showers as well as background
neutrons combined with neutrons from fissioning sys-
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tems. We have also detailed methods to parameterize
background neutrons.
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IV. SEQUENTIAL BAYESIAN ALGORITHM

A. Sequential Detection of Fission Chains

In order to develop a sequential processor28,29, we must
test the binary hypothesis that the measured inter-arrival
times have evolved from a fissioning SNM threat. The
basic decision problem is simply stated as:

GIVEN a set of uncertain neutron multiplicity detector
inter-arrival measurements {τm};m = 0, 1, · · · ,M from
an unknown source, DECIDE whether or not the source
is a threat (SNM). If so, “extract” its characteristic pa-
rameters, Θ to “classify” its type.

We are to test the hypothesis that the set of measured
neutron inter-arrivals TM have evolved from a threat or
non-threat source. Therefore, we specify the hypothesis
test by

H0 : TM = TB
(

m; Θb

)
+ TV

(
m
)

[NON-THREAT]

H1 : TM = TS
(

m; Θs

)
+ TB

(
m; Θb

)
+ TV

(
m
)

[THREAT]

(127)

where TS is the unknown source inter-arrivals with pa-
rameters Θs, TB is the background inter-arrivals (cosmic
rays, etc.) with parameters Θb, TV is the zero-mean,
Gaussian measurement (instrumentation) inter-arrival
noise, TM := {τ0, τ1, · · · , τM} and m := 0, 1, · · · ,M .

The fundamental approach of classical detection the-
ory to solving this binary decision problem is to apply
the Neyman-Pearson criterion of maximizing the detec-
tion probability for a specified false alarm rate28 with
the parameters Θ known. The result leads to a likelihood
ratio decision function defined by28,29

L(TM ; Θ) :=
Pr[TM |Θ;H1]

Pr[TM |Θ;H0]

H1

>
<
H0

T (128)

with threshold T . This expression implies a “batch” deci-
sion, that is, we gather the M inter-arrivals TM , calculate

the likelihood (Eq. 128) over the entire batch of data and
compare it to the threshold T to make the decision.

Sequential Processor

An alternative to the batch approach is the sequen-
tial method which can be developed by expanding the
likelihood ratio for each inter-arrival to obtain

L(TM ; Θ) =
Pr[TM |Θ;H1]

Pr[TM |Θ;H0]
=

Pr[τ0, τ1, · · · , τM |Θ;H1]

Pr[τ0, τ1, · · · , τM |Θ;H0]
(129)

From the chain rule of probability and Bayes’ rule30 for
` = 0, 1, we have that

Pr[TM |Θ;H`] = Pr[τM , TM−1|Θ;H`]
= Pr[τM |TM−1,Θ;H`]× Pr[TM−1|Θ;H`]

(130)

Substituting these expressions into the likelihood ratio
above, replacing m→M and grouping, we obtain

L(Tm; Θ) =

[
Pr[Tm−1|Θ;H1]

Pr[Tm−1|Θ;H0]

]
× Pr[τm|Tm−1,Θ;H1]

Pr[τm|Tm−1,Θ;H0]
(131)

and the recursion or equivalently sequential likelihood ra-
tio for the m-th inter-arrival follows as

L(Tm; Θ) = L(Tm−1; Θ)×Pr[τm|Tm−1,Θ;H1]

Pr[τm|Tm−1,Θ;H0]
;m = 0, · · · ,M

(132)
with Pr[τ0|T−1,Θ;H`] = Pr[τ0|Θ;H`], the prior under
each hypothesis.

Therefore, the Wald sequential probability-ratio test
is31,32

L(Tm; Θ) > T1(m) Accept H1

T0(m) ≤ L(Tm; Θ) ≤ T1(m) Continue

L(Tm; Θ) < T0(m) Accept H0

(133)

where the thresholds are specified in terms of the false
alarm (PFA) and miss (PM ) probabilities as

T0(m) =
PM (m)

1− PFA(m)
T1(m) =

1− PM (m)

PFA(m)
(134)

These thresholds are determined from a receiver op-
erating characteristic (ROC) curve (detection versus
false alarm probabilities) obtained by simulation or a
controlled experiment to calculate the decision func-
tion. That is, an operating point is selected from the
ROC corresponding to specific detection (or equivalently
miss) and false-alarm probabilities specifying the re-
quired thresholds which are calculated according to Eq.
134 for each parameter update.

LLNL-TR-676944 31 August 2015



33

FIG. 29. As each individual inter-arrival is extracted, it is
discriminated, estimated, the decision function calculated and
compared to thresholds to DECIDE if the targeted threat is
detected. Quantitative performance and sequential thresholds
are determined from estimated ROC curve and the selected
operating point (detection/false alarm probability).

It should be noted that the non-sequential Bayesian de-
tection technique is optimum in the sense that no other
hypothesis test can achieve a smaller average risk (small-
est error probabilities31,32). This approach was devel-
oped under the assumption that the number of measure-
ments required to achieve this optimum is known (fixed)
in advance. In relaxing this constraint, sequential de-
tection techniques are superior to fixed non-sequential
Bayesian detection in the sense that “on the average”
a substantially smaller number of measurements are re-
quired to achieve the same error probabilities. The dis-
advantage though is that this number of measurements
required is random.

With this in mind, it is possible to show that the aver-
age number of measurements required to reach a decision
is given by32:

A reasonable approach to this problem of making a re-
liable decision with high confidence in a timely manner
is to develop a sequential detection processor as illus-
trated in Fig. 29. At each neutron arrival (at τm), we
sequentially update the decision function and compare it
to the thresholds to perform the detection—“neutron-by-
neutron”. Here as each neutron is monitored producing
the inter-arrival sequence, the processor takes each inter-
arrival measurement and attempts to “decide” whether
or not it evolves from a threat or non-threat. For each
inter-arrival, the decision function is “sequentially” up-
dated and compared to the detection thresholds obtained
from the ROC curve operating point enabling a rapid de-
cision. Once the threshold is crossed, the decision (threat
or non-threat) is made and the arrival is processed; how-
ever, if not enough data is available to make the decision,
then another measurement is obtained.

Generalized Likelihood-Ratio Test

For our problem, we typically have information about
the background, disturbance and noise parameters, but

we rarely have the source information. Therefore, we
still can make a decision, but require estimates of the
unknown parameters, that is, Θ̂ → Θ. In this case, we
must construct a composite or generalized likelihood-ratio
test (GLRT).

Therefore from the batch likelihood decision function
of Eq. 129, we can consider the two cases of the GLRT:
(i) parameters are random or (ii) parameters are deter-
ministic but unknown.

When the conditional distributions of our problem con-
tain a set of parameters that are random, then the distri-
butions of interest are joint, that is, Pr[TM ,Θ|H`] must
be incorporated in the likelihood ratio such that

L(TM ; Θ) =
Pr[TM |H1]

Pr[TM |H0]
=

∫
Pr[TM ,Θ|H1]dΘ∫
Pr[TM ,Θ|H0]dΘ

(135)

Applying Bayes’ rule to expand the distributions, we have
the general solution for the random case as

L(TM ; Θ) =
Pr[TM |H1]

Pr[TM |H0]
=

∫
Pr[TM |Θ;H1]Pr[Θ|H1]dΘ∫
Pr[TM |Θ;H0]Pr[Θ|H0]dΘ

(136)
Assuming known parametric distributions, Pr[Θ|H`],
then by integrating over Θ, the likelihood ratio can be
determined reducing the composite problem to a simple
hypothesis testing problem.

In the second case, Θ is considered to be deterministic
but unknown. Here the approach is to estimate the un-
known parameter vector Θ̂ → Θ under each hypothesis
and proceed with the simple testing. A maximum like-
lihood estimate Θ̂ML, can be used to create the GLRT
such that

L(TM ; Θ) =

max Pr[TM |Θ1;H1]
Θ1

max Pr[TM |Θ0;H0]
Θ0

(137)

This is the approach we employ initially. The batch so-
lution for the GLRT can also be extended to the sequen-
tial case as before giving the solution by simply replacing
Θ̂ML → Θ, that is,

L(Tm; Θ̂) = L(Tm−1; Θ̂)× Pr[τm|Tm−1, Θ̂1;H1]

Pr[τm|Tm−1, Θ̂0;H0]
;

m = 0, 1, · · · ,M
(138)

Anticipating Gaussian models (exponential family30)
for our unknown parameters, we develop the logarith-
mic form of the sequential likelihood decision function.
Simply taking the natural logarithm of Eq. 138, that
is, Λ(TM ; Θ) := lnL(TM ; Θ) we obtain the log-likelihood
sequential decision function as
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Λ(Tm; Θ̂) = Λ(Tm−1; Θ̂) +

ln Pr[τm|Tm−1, Θ̂1;H1]− ln Pr[τm|Tm−1, Θ̂0;H0]

(139)

Using these formulations, we develop the detection al-
gorithm for our problem next. We should note that we
only consider the “threat detection problem” in this pa-
per.

B. Physics-Based Models for Detection

In this section we discuss the development of a physics-
based fission model capturing the joint distribution of the
overall fission processes and their underlying statistics.
As mentioned above, this development is based on the
fundamental theory and modeling.12 We start with the
basic neutron physics and progress to the full propagation
leading to the desired probability distribution.

Fission-Based Processing Model

A neutron arriving at a detector at energy level α and
arrival time tm can be characterized as a single impulse
εmδ(t − tm). A train of neutrons is defined as a set of
arrivals that do not overlap in time and can be written
simply as

η(t) :=

M∑
m=0

εmδ(t− tm) (140)

Inter-arrival times are defined as τm := tm − tm−1 for
m = 0, 1, · · · ,M with t−1 := 0 and the complete set of
inter-arrivals by TM := {τ0, τ1, · · · , τM}. These arrivals
are measured by a neutron multiplicity counter33 that
is basically a neutron detector that evaluates the inter-
arrival time probability distribution of neutrons emitted
spontaneously by fissionable materials. Recall that the
radioactive decay of each unstable nucleus produces mul-
tiple neutrons that can interact with other nuclei exciting
them to energy levels enabling them to split into smaller
unequal fission fragments which are also unstable and
decay even further (emitting neutrons) toward stable nu-
clei. The detection of these neutrons, which can pass
through heavy shielding, provides a methodology to de-
tect special nuclear material. The key issue with threat
materials is that the number of neutrons released are pro-
duced by a single decay defining its multiplication. These
“correlated” neutrons offer a unique SNM signature that
indicates both its multiplication and the mass of spon-
taneous fission isotopes. Thus, the neutron multiplicity
counter or neutron detector is a stochastic measurement
system creating an estimated time-interval probability

distribution that is used in the neutron detection process
to alarm on SNM. Thus, the essential ingredient of these
measurements is its underlying time-interval probability
distribution.

A simplistic model of the multiplication process con-
sists of a fission chain generated by a spontaneous fission
under the assumption that the source is characterized by
an inhomogeneous Poisson process with a varying fission
rate.6,10 During a single fission chain ν-neutrons are emit-
ted with probability Pν . These emissions are slowed in a
moderator and diffuse exponentially in time as thermal
neutrons. Then the probability that n of the ν neutrons
are absorbed in the detector and converted to electrical
pulses is

Pr[ν;TM ] = Pν(
ν
n

)εn(1− ε)ν−n (141)

where ε is the probability of neutron detection (detection
efficiency). Mathematically, we can represent the Nν-
neutron burst sequence emitted by

η(τm; ΘS) =

Nν∑
i=1

αiδ(τ−τm(ΘS));m = 0, · · · ,M ; τm < TM

(142)
for α the i-th energy of the neutron at the m-th inter-
arrival in the M -th time interval. Typically, we ignore
the neutron energy and concentrate on the inter-arrival,
since the source information is contained in τm(ΘS).

For spontaneous fissions, the quantity, keff , is the av-
erage number of neutrons from one fission that initiates
another fission34. Any remaining neutrons are absorbed
or escape. The value of keff specifies how a chain will
proceed. For instance, the keff = 1 (critical mass) leads
to a fission level that is constant and is typical to power
plant operation, while keff > 1 (super-critical mass) for
an event implies that there may be keff -events to fol-
low which is typical in weapons applications. For the
latter, the number of fission reactions increase exponen-
tially. We will use Eq. 142 in developing the subsequent
fission detection schemes to follow.

Inter-arrival Distribution

Theoretically, the conditional distribution of inter-
arrival times τ conditioned on a set of source parameters
Θ is given by12,27

Pr[τ |Θ] = R1r0n0︸ ︷︷ ︸
Time between chain initiations

+

FS
R1

∞∑
n=2

en(ε)

(
n−1∑
k=1

ke−kλτ

)
λb0(τ)︸ ︷︷ ︸

Time between neutrons in same chain

(143)
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where

R1 is the count rate;

r0 is the probability that NO neutrons are detected
within the time-interval τ ;

n0 is the probability of zero counts in time interval τ ;

τ is the time interval or inter-arrival time;

FS is the fission rate;

en(ε) is the probability of detecting n neutrons from
the same fission chain;

λ is the inverse of the diffusion time scale; and

b0(τ) is the probability of NO counts in time interval
τ .

Embedded in Eq. 143 is a set of various relations that
capture the time-interval probability:

Fs =
NA
A

ln 2 t1/2

t1/2 t
SF
1/2

mS

R1 = ε q M νS FS

for

mS mass of the source;

ε is the detection efficiency;

p is the probability that a neutron induces a fission;

q is the escape probability (q = 1− p);

M is the system multiplication;

νS is the average neutron count from a spontaneous
fission;

νI is the average neutron count from an induced fission;

NA is Avogadro’s number;

A is the atomic weight; and

t1/2 is the half-life.

with multiplication given by

M =
1

1− pνI
=

1

1− keff

For keff < 1 the escape multiplication Me = q×M and de-
tection efficiency ε are related by ε = a/(bM2

e+cMe); 0 ≤
ε ≤ 1; a, b, c are fit parameters. The probability of de-
tecting n-neutrons of the ν emitted with probability Pν
is given by

en(ε) =

∞∑
ν=n

Pν

(
ν
n

)
εn(1− ε)ν−n (144)

The following probabilities complete the distribution

r0 =
FS
R1

∞∑
n=1

en(ε)
( n−1∑
k=0

e−kλτ
)

(145)

and

b0(τ) = exp

[
− FS

∫ τ

0

1

1− e−λt

(
1−

∞∑
ν=0

Pν(1− ε(1− e−λt))ν
)
dt

]
(146)

n0(τ) = r0(τ)× b0(τ)

Since the objective is to “decide” whether or not a fis-
sioning source is present, we require a-priori knowledge
of the source parameters: mass, multiplication, detection
efficiency and diffusion time scale parameters. Notation-
ally, we define the source parameters as mS, keff , ε and
λ respectively and note their intimate relations in the
overall probability distribution function.

In order to investigate the subsequent processors and
evaluate their performance, a simulation of neutron
arrival times was developed using the following well-
founded12,35 approach: (1) a set of Poisson rates depen-
dent on keff , source mass mS, and efficiency ε for the
detection of a given number of neutrons from the same
fission chain is calculated; (2) occurrence times are sam-

pled from a Poisson process for fission chains where a
specified number of neutrons are detected; (3) sampling
is repeated for each rate corresponding to the number of
neutrons that can be detected out to a minimum proba-
bility of 10−15; (4) n diffusion time increments are sam-
pled from an exponential distribution with parameter λ
(inverse diffusion time scale) for a chain where n neutrons
were detected; (5) these diffusion time increments are
then added to the occurrence time of the parent fission
chain to obtain a detection time; and (6) all of the result-
ing detection times are merged to produce the synthe-
sized time-tagged data for processor performance anal-
ysis. For more details and the underlying mathematics
see12,35.

A calculation of this underlying theoretical distribu-
tion for a set of source parameters is shown in Fig. 28
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where we observe the characteristic bimodal time inter-
val probability (solid line)12. A simulation was performed
and its distribution estimated from the synthesized data
samples. These estimated probabilities are the points
lying on the curve of Fig. 28, that is, they lie on the
calculated theoretical waiting time distribution curve12

indicating a reasonable realization.

It should be noted that developing a simulator that is
not scenario dependent is the usual approach in model-
based (physics-based) processor design36 in order to de-
couple extraneous and unpredictable events that detract
from a focused processor performance analysis. We apply
the processor to data synthesized from the MCNP Monte
Carlo simulator37 for a scenario illustrating a high mul-
tiplication events in §IV E.

Sequential Detection for Fission Processes

Here we start with the results of the previous section
and incorporate the physics of the fission process. For
fission detection, we start with the simple neutron model
of Eq. 142 at inter-arrival time τm leading to the subse-
quent (sequential) hypothesis test:

H0 : τm = TB
(
m; Θb

)
+ TV

(
m
)

[NON-THREAT]

H1 : τm = TS
(
m; Θs

)
+ TB

(
m; Θb

)
+ TV

(
m
)

[THREAT]

(147)

The sequential detection solution (as before) for this
problem with unknown source parameters follows di-
rectly from the GLRT results of Eq. 138 to yield

L(Tm; Θ̂) = L(Tm−1; Θ̂)× Pr[τm|Tm−1, Θ̂;H1]

Pr[τm|Tm−1,Θ;H0]
(148)

To implement the processor, we must first determine
the required conditional probabilities in order to specify
the decision function, that is,

Pr[τm|Tm−1, Θ̂;H1] = Pr[TS(m; ΘS)|Tm−1, Θ̂S ;H1] +

Pr[TB(m; Θb)|Tm−1,Θb;H1] +

Pr[TV (m)] (149)

and under the null hypothesis

Pr[τm|Tm−1,Θ;H0] = Pr[TB(m; Θb)|Tm−1,Θb;H0]

+Pr[TV (m)] (150)

where the Gaussian inter-arrival noise is distributed
as TV ∼ N (0, σ2

vv) and the known background
disturbances38 are ignored (at this point) while the inter-
arrival distribution is specified (instantaneously at τm) by

Eq. 143 with τm → τ to give:

Pr[TS(m; ΘS)|Tm−1, Θ̂S ;H1] = R1r0n0 +

FS
R1

∞∑
n=2

en(ε)

(
n−1∑
k=1

ke−kλτm

)
λb0(τm)

(151)

Pr[TV (m)] =
1√

2πσ2
vv

exp
{
− 1

2

T 2
V (m)

σ2
vv

}
(152)

Therefore, the likelihood ratio becomes (simply)

L(Tm; Θ) = L(Tm−1; Θ)×[
R1r0n0 +

FS
R1

∞∑
n=2

en(ε)

(
n−1∑
k=1

ke−kλτm

)
λb0(τm)

+
1√

2πσ2
vv

exp
{
− 1

2

T 2
V (m)

σ2
vv

}]/
1√

2πσ2
vv

exp
{
− 1

2

T 2
V (m)

σ2
vv

}
(153)

which completes the case with ΘS , an unknown constant
to be estimated independently.

The equivalent log-likelihood ratio is given by

Λ(Tm; Θ) = Λ(Tm−1; Θ) +

ln
[
R1r0n0 +

FS
R1

∞∑
n=2

en(ε)

(
n−1∑
k=1

ke−kλτm

)
λb0(τm)

+
1√

2πσ2
vv

exp
{
− 1

2

T 2
V (m)

σ2
vv

}]
−ln

( 1√
2πσ2

vv

)
+

1

2

T 2
V (m)

σ2
vv

(154)

We can also extend the problem to the random pa-
rameter case. Suppose we assume that each of the in-
dependent source parameters are governed by a ran-
dom walk/random constant model. The parameters
are assumed piecewise constant and subjected to zero-
mean, Gaussian, random uncertainties, wΘ(τm) driv-
ing the process with covariance RwΘwΘ

(τm)39, then in
this case we have that the initial parameters, Θ(τ0) ∼
N
(
mΘ(τ0), RΘΘ(τ0)

)
, where mΘ(τo) is the initial mean

with RΘΘ(τ0) its corresponding covariance. A more de-
tailed discussion follows subsequently when we discuss
the underlying parameter estimation problem in §IV C
(see Eq. 168). Thus, the corresponding multivariate
source parameter distribution is given by

Pr[Θ(τm)] = (2π)−NΘ/2|RΘΘ(τm)|−1/2 ×

exp
{
− 1/2 (Θ(τm)−mΘ(τm))′R−1

ΘΘ(τm)(Θ(τm)−Θ(τm))
}

(155)
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and the log-likelihood ratio becomes

Λ(Tm; Θ) = Λ(Tm−1; Θ) +

ln Pr[τm,Θ(τm)|Tm−1;H1]− ln Pr[τm|Tm−1,Θ;H0]

(156)

where the second term can be expanded further by ap-

plying Bayes’ rule to give

Pr[τm,Θ(τm)|Tm−1;H1] = Pr[τm|Tm−1,Θ(τm);H1]

× Pr[Θ(τm)|Tm−1;H1]

(157)

Substituting this expression for the source distribution of
Eq. 149 gives

Pr[TS(m; ΘS)|Tm−1, Θ̂S ;H1] −→ Pr[τm|Tm−1,Θ(τm);H1]

× Pr[Θ(τm)|Tm−1;H1]

(158)

With this in mind, the sequential log-likelihood can be
calculated directly by substituting the prescribed distri-
butions into Eq. 156 to give

Λ(Tm; Θ) = Λ(Tm−1; Θ) + ln
(
R1r0n0 +

FS
R1

∞∑
n=2

en(ε)

(
n−1∑
k=1

ke−kλτm

)
λb0(τm)

×(2π)−NΘ/2|RΘΘ(τm)|−1/2 × exp
{
− 1/2 (Θ(τm)−mΘ(τm))′R−1

ΘΘ(τm)(Θ(τm)−Θ(τm))
}

+
1√

2πσ2
vv

exp
{
− 1

2

T 2
V (m)

σ2
vv

})
+

1

2
ln
(

2πσ2
vv

)
− 1

2

T 2
V (m)

σ2
vv

(159)

This completes the development of the sequential
Bayesian detection approach for fission processes. Next
we must consider the parameter estimation problem in
more detail.

C. Bayesian Parameter Estimation

In order to implement the GLRT of the previous sec-
tion, we must estimate the unknown parameters Θ at
each arrival. We first develop the batch scheme and then
its sequential version similar to the sequential Bayesian
detector of the previous section. Here we develop the
Bayesian parameter estimator that can be applied to the
following problem:

GIVEN a set of uncertain multiplicity counter (inter-
arrival time) measurements, TM ; FIND the “best” esti-

mate Θ̂ of the unknown fission source parameters, Θ.

From a statistical perspective, we would like to esti-
mate the posterior distribution of source parameters Θ
given the entire inter-arrival data set TM or Pr[Θ|TM ].
Applying Bayes’ theorem we have that

Pr[Θ|TM ] =
Pr[TM |Θ]× Pr[Θ]

Pr[TM ]
(160)

Due to the sequential nature of our problem, that is, the

neutron multiplicity counter measures each neutron ar-
rival time individually—neutron-by-neutron; we require
a sequential version.

Sequential Bayesian Processor

It can be shown39 that a sequential Bayesian solution
can be developed for the posterior. Starting with the first
term of Eq. 160 and applying Bayes’ rule we have

Pr[TM |Θ] = Pr[τM , TM−1|Θ] = Pr[τM |TM−1,Θ]×Pr[TM−1|Θ]
(161)

and for the denominator term we have

Pr[TM ] = Pr[τM , TM−1] = Pr[τM |TM−1]× Pr[TM−1]
(162)

Substituting Eqs. 161 and 162 into Eq. 160 and grouping
terms, we obtain

Pr[Θ|TM ] =
(Pr[τM |TM−1,Θ]

Pr[τM |TM−1]

)
︸ ︷︷ ︸

W (τm)

×
(Pr[TM−1|Θ]× Pr[Θ]

Pr[TM−1]

)
︸ ︷︷ ︸

Pr[Θ|TM−1]

(163)
or

Pr[Θ|TM ] = W (τm)× Pr [Θ|TM−1] (164)

LLNL-TR-676944 31 August 2015



38

which is the sequential form of the posterior distribution.
If we further assume that the inter-arrivals are Marko-
vian with the current arrival depending only on the pre-
vious, that is, (τm, TM−1) −→ (τm, τm−1), then we have
the desired expression for sequentially propagating the
posterior as

Pr[Θ|τm] = W (τm)× Pr [Θ|τm−1] (165)

where

W (τm) =
Pr [τm|τm−1,Θ]

Pr [τm|τm−1]
(166)

Here we assumed that the parameter vector is a ran-
dom constant Θ with no associated dynamics to con-
struct a sequential Bayesian processor. However, in the
real-world case, it is clear that when measuring neu-
tron inter-arrivals from an unknown source, then there
can easily be variations or uncertainties associated with
each parameter. Perhaps a more reasonable model for
these parametric variations is the random-walk/constant
introduced in the previous section39. That is, we know
in continuous-time that the walk is given by d

dtΘ(τ) =
wΘ(τ) and by taking first differences to approximate the
derivative we can obtain a sampled-data representation39

as

Θ(τm) = Θ(τm−1) +4τm wΘ(τm−1) (167)

where 4τm := τm− τm−1 for the parametric uncertainty
included in Θ(τm) ∼ N (mΘ(τm), RΘΘ(τm)), since wΘ ∼
N (0, Rwθwθ (τm)). The variations of each Θ-parameter
can be controlled by its initial guess Θ(τ0) and variance,
RΘΘ(τ0).

The statistics of the random walk/constant model are
given by the sequential Gauss-Markov structure

Θ(τm) = Θ(τm−1) +4τm wΘ(τm−1) [STATE]

mΘ(τm) = mΘ(τm−1) [MEAN]

RΘΘ(τm) = RΘΘ(τm−1) + (4τm)2Rwθwθ (τm−1)

[VARIANCE]

(168)

Physically we have that Rwθwθ =
diag[σ2

MM σ2
keffkeff

σ2
εε σ2

λ−1λ−1 ] and the subsequent
search can include a bounded uniform variate for each
initial value, Θ0 = U [a, b] enabling a more pragmatic
approach to modeling the parameter set with their
individual accompanying uncertainties. With this model
in mind, we re-derive the sequential Bayesian processor
as before starting with the batch approach. We would
like to estimate Θ(τm) with the complete parameter set
defined by ΘM := {Θ(τ0),Θ(τ1) · · · ,Θ(τM )}. The batch
posterior is given by Bayes’ theorem as before

Pr[ΘM |TM ] =
Pr[TM |ΘM ]× Pr[ΘM ]

Pr[TM ]
(169)

The first term can be decomposed by applying Bayes’
rule as

Pr[TM |ΘM ] = Pr[τm, TM−1|Θ(τm),ΘM−1]

= Pr[τm|TM−1,Θ(τm),ΘM−1]

× Pr[TM−1|Θ(τm),ΘM−1] (170)

The inter-arrival time τm is independent ΘM−1 and
TM−1, so that the first term in Eq. 170 becomes
Pr[τm|Θ(τm)], while the second term simplifies to
Pr[τM−1|ΘM−1], since the parameter vector Θ(τm) is
assumed independent of the past measurement data.
Therefore, we have

Pr[TM |ΘM ] = Pr[τm|Θ(τm)]× Pr[TM−1|ΘM−1] (171)

The second term of Eq. 169 can be decomposed simi-
larly as

Pr[ΘM ] = Pr[Θ(τm),ΘM−1] = Pr[Θ(τm)|ΘM−1]×Pr[ΘM−1]
(172)

and the decomposition of Pr[TM ] in the denominator is
given in Eq. 161 above.

Substituting these relations (Eqs. 161, 171, 172) into
Eq. 169, and assuming a Markovian process as before,
we obtain

Pr[ΘM |TM ] =
(

Pr[τm|Θ(τm)]× Pr[TM−1|ΘM−1]
)

×
(

Pr[Θ(τm)|Θ(τm−1)]× Pr[ΘM−1]
)

/ Pr[τm|τm−1]× Pr[TM−1]

(173)

Now grouping the terms the desired posterior distribu-
tion becomes

Pr[ΘM |TM ] =
(Pr[τm|Θ(τm)]× Pr[Θ(τm)|Θ(τm−1)]

Pr[τm|τm−1]

)
×
(Pr[TM−1|ΘM−1]× Pr[ΘM−1]

Pr[TM−1]

)
(174)

or simply (replacing τm −→ TM )

Pr[Θm|Tm] = W (τm)× Pr[Θm−1|Tm−1] (175)

where

W (τm) :=
Pr [τm|Θ(τm)]× Pr[Θ(τm)|Θ(τm−1)]

Pr [τm|τm−1]
(176)

which is the sequential Bayesian solution for the dynamic
parametric model (random walk/constant). A particle
filter is an implementation of this recursion39,40. We de-
velop the particle filter generically in Appendix A.
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Particle Filter for Fission Processes

Particle filtering is a technique that evolves from the
“importance sampling” approach to statistical sampling
of data. The key idea is to select particles (or parame-
ters in our problem) from the regions of highest probabil-
ities or equivalently regions of highest importance. Once
the resulting importance weight is determined, the de-
sired posterior distribution is approximated by a non-
parametric probability mass function (PMF) as

P̂r[ΘM |TM ] =
∑
i

Wi(τm) δ
(

Θ(τm)−Θi(τm)
)

(177)

where Wi is the normalized weighting function given as
the ratio of the posterior at inter-arrival time τm and the
designed importance distribution q as

Wi(τm) :=
Pr[Θ(τm)|Tm]

q[Θ(τm)|Tm]
=

Pr[τm|Θ(τm)]

q[τm|Θ(τm)]

× Pr[Θ(τm)]

q[Θ(τm)|Θm−1, τm]

(178)

The normalized weight is simply

Wi(τm) :=
Wi(τm)∑
iWi(τm)

(179)

The “bootstrap” processor is the most popular
technique39. Here the proposal is selected as the tran-
sition prior and the weighting function becomes simply
the likelihood

W (τm) = W (τm−1)× Pr[τm|Θ(τm)] (180)

With these relations in mind, the sequential Bayesian
processor can be developed for our problem. We start
with the basic bootstrap technique (see Fig. 30) to es-
timate the unknown source parameters that will even-
tually become part of the log-likelihood decision func-
tion. Initially, we assume the prior distributions are
uniformly distributed with bounds selected over some
pragmatic intervals U(a, b). The dynamic parameter up-
dates are given by the random-walk/constant model of
Eq. 168 driven by zero-mean, Gaussian noise with co-
variance RwΘwΘ

with initial mean (constant) Θ(τ0) and
corresponding parametric covariance RΘΘ(τ0). The like-
lihood distribution embeds the “fission physics” of Eq.
143.

The bootstrap algorithm performs the following steps
shown in the flow chart BOOTSTRAP PF FOR FIS-
SION PROCESSING.

BOOTSTRAP PF FOR FISSION PROCESSING

PRIOR

FIG. 30. Bootstrap Particle Filter Technique: Priors, Pre-
diction, Update, Resampling and Posterior PMF estimate.

Θi(τ0) ∼ Pr(Θ(τ0))→ U(θa, θb); Wi(τ0) =
1

Np

i = 1, · · · , Np [sample]

PREDICTION

Θi(τm) = Θi(τm−1)+wi(τm−1);wi ∼ N (0, Rwiwi)[transition]

τ̂m = maxτ∈TL[τm] [Measurement Pred.]

Weight (Likelihood) Update:

Wi(τm) = L [τm|Θi(τm)] [weight/likelihood]

Weight normalization:

Wi(τm) =
Wi(τm)∑Np
i=1Wi(τm)

RESAMPLING DECISION

N̂eff =
1∑Np

i=1W
2
i (τm)

[effective samples]

N̂eff =

{
Resample ≤ Nthresh

Accept > Nthresh

RESAMPLING

Θ̂i(τm)⇒ Θi(τm)
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POSTERIOR DISTRIBUTION

P̂r(Θ(τm)|Tm) ≈
Np∑
i=1

Wi(τm)δ(Θ(τm)− Θ̂i(τm))

D. SNM Detection and Estimation: Feasibility Data

In this section we investigate the performance of the
sequential Bayesian detector/estimator on simulated fea-
sibility data with no background. We assume a set
of parameters to statistically synthesize a set of ar-
rivals used to calculated the inter-arrivals {τm}; m =
0, 1, · · · ,M . We start with the results from the se-
quential Bayesian detection algorithm that incorporates
the Bayesian parameter estimator as part of its inher-
ent structure as illustrated in Fig. 31. Note that the
unknown source parameter vector to be estimated has
the following physical parameters (from the inter-arrival
PDF): Θ := [mS keff ε λ−1]T—the mass of the source,
effective multiplication (keff), detector efficiency and in-
verse diffusion time, respectively.

The bootstrap PF was applied to a synthesized neu-
tron arrival sequence shown in Fig. 31. We note from
the figure that the inter-arrival data is processed by the
sequential Bayesian estimator to provide predicted es-
timates of the source parameters, Θ̂(τm|τm−1). These
estimates are then input to the physics-based likelihood
to predict the corresponding PDF which is a part of the
log-likelihood decision function. These predicted param-
eters are also provided directly as individual inputs to the
log-likelihood decision function. Once the decision func-
tion is calculated at τm, it is compared to the thresholds
to “decide” whether or not a threat is present. If so,
the alarm is initiated. If not, another measurement is
processed on arrival (take more data).

There exists a variety of metrics that can be applied to
evaluate detection performance ranging from confusion
matrices to statistical hypothesis tests41, but perhaps the
most basic and most robust method is the calculation of
the receiver operating characteristic curve. The ROC
curve is simply a graph of detection (PDET ) versus false
alarm (PFA) probabilities parameterized by threshold, T
with perfect performance occurring when PDET = 1 and
PFA = 0. The ROC curve provides all of the fundamental
information from which most other metrics are derived.
Thus, there are many individual metrics that can be ex-
tracted directly from a ROC curve including sensitivity,
specificity, cost/benefit analysis along with a set of spe-
cific features like area-under-ROC-curve (AUC≈ 1) and
minimum probability of error (MinE)41.

As mentioned above, it is necessary to calculate a ROC
curve to select an operating point (detection and false-
alarm probabilities) to calculate the sequential thresh-
olds. In order to generate the ROC, we synthesize an

FIG. 31. Fission detection/estimation processing: Count
data, fission parameter estimation, sequential detection and
alarm.

ensemble of 30-members each consisting of 100-arrivals
selected directly from a feasibility simulation data set us-
ing the following source (uranium) parameters: mS = 25
kg, keff = 0.9; ε = 0.03; λ−1 = 0.01. This ensemble of
overlayed realizations is depicted in Fig. 32 with the ar-
rows annotating a typical arrival realization. We chose
to use a signal-to-noise ratio (SNR) of 6.9 dB defined by
the 10 log-ratio of the signal energy to noise energy (vari-
ance). The local ROC for each member realization was
estimated and then the average ROC was used for the
calculation as shown in Fig. 33. Performance metrics
such as AUC are also calculated to assess detection per-
formance (AUC=0.95). For “perfect” performance, the
detection probability is unity and false-alarm probability
zero corresponding to an AUC of unity. The optimum
operating point (PFA, PDET ) is calculated by minimiz-
ing the Bayes’ risk (see41 for details) yielding a detection
probability of 92% for a false alarm probability of 0.1%
at this SNR. Substituting these values into the threshold
calculation of Eq. 134 and taking the natural logarithm
give the thresholds (ln τ0, ln τ1) as (−2.48, 7.23). A typ-
ical realization of sequential Bayesian detection results
for a member of the ensemble is shown in Fig. 34 show-
ing the decision function exceeding the upper threshold
thereby indicating a threat and subsequent alarm.

Only 100 inter-arrivals were investigated to observe the
feasibility of this approach. We observe the uncertainty
of the inter-arrivals caused by the randomness of the fis-
sion process. The physical parameters were estimated
with the results shown in Fig. 35. We selected a 10%
error in the initial starting parameter values and drew
them from a uniform distribution. The parameter esti-
mates are quite reasonable for this realization at 6.9 dB.
For parameter estimation performance metrics, we use
the average RMS-error (absolute/relative errors) of each
estimator to give: mass (RMS-error = 0.03/0.28% kg);
effective multiplication (RMS-error = 0.0025/0.12%); ef-
ficiency (RMS-error = 0.00006/0.20%); and inverse dif-
fusion time (λ) (RMS-error = 0.00004/0.4% µs−1).

Note that the true parameter value is shown as the line
(dashed) and both the maximum a-posterior (MAP) and
conditional mean (CM) estimates are shown (arrows) on
the plots. They appear to track the physical parameters
quite well (small RMS errors) for this realization based
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FIG. 32. Synthesized ensemble of inter-arrival data for ROC
curve analysis: 30 realizations of 100 samples each with typ-
ical member realization shown with arrows locating largest
times.

FIG. 33. Ensemble average and median receiver operating
characteristic (ROC) curves for SNR=6.9 dB simulation with
AUC = 0.95, (PFA, PDET )=(0.0007, 0.916).

on the initializing the parameter estimators with a 10%
error.

In order to evaluate the processor performance, we per-
form a sequence of 100 realizations and calculate ensem-
ble statistics. Finally we observe the estimated parame-
ter posterior PMF s in Figs. 36 and 37. We see the esti-
mated parameter posterior PMF of the mass and effective
multiplication (keff) parameters in Fig. 36 and the effi-
ciency and inverse diffusion time (λ−1) parameters in Fig.
37. Note that the distributions are multimodal (multiple
peaks) and are centered somewhere about the mean value
(true values) of each parameter. Finally we show a set of
for snapshots (or slices) at various inter-arrival samples
(75, 100) throughout the simulation. Note that each is
a slice of the 3D PMF s shown for all of the physical

FIG. 34. Sequential Bayesian (log-likelihood) threat detec-
tion for (PFA, PDET )=(0.0007, 0.916) and thresholds at (ln τ0,
ln τ1)=(−2.48, 7.23).

FIG. 35. Sequential Bayesian parameter estimates (arrows)
and absolute RMS error for a SNR=6.9dB: (a) Mass (25±0.03
kg). (b) Effective multiplication (keft = 0.90 ± 0.0025). (c)
Efficiency (0.03 ± 0.00006). (d) Inverse diffusion time (λ =
0.01± 0.00004 µs−1).

parameters. Also note how the estimated particles coa-
lesce (as expected) about the highest probability regions
which are annotated by the arrows in Fig. 38.

E. Case Study

The critical part of this technique is the estimation
of the source and associated fission parameters: mass
of the source, effective multiplication, detector efficiency
and the inverse diffusion time. From these parameters
various sources can be detected directly and classified.
Here we investigate the performance of the sequential
Bayesian processor employing the time interval distribu-
tion of Prasad and Snyderman12,27. We use the Monte
Carlo N-Particle Transport Code (MCNP) to synthesize
the fission processes, since it has the capability to sim-
ulate particle interactions involving neutrons, photons,
and electrons. We develop a high multiplication scenario
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FIG. 36. Ensemble of posterior PMF parameter estimates
for physics (source parameters): (a) Mass (mS = 25 kg). (b)
Effective multiplication (keff = 0.90).

FIG. 37. Ensemble of posterior PMF parameter estimates
for physics (source parameters): (a) Efficiency (ε0 = 0.03).
(b) Inverse diffusion time (λ = 0.01 µs−1).

for highly enriched uranium (HEU) in steel.
Using MCNP we simulated the scenario incorporat-

ing a model of the recently developed MC-15 multiplicity
counter which consists of 15 1-inch diameter by 15-inch
long tubes each containing 10 atm of helium-3 and em-
bedded in high-density polyethylene. The front panel
has a single row of seven tubes and the main detector
has eight tubes consisting of a forward row of six tubes
and a back row of two tubes. We also incorporated back-
ground into the simulations detailed in42. Here Poisson
uncertainties are incorporated directly into the physics-
based likelihood distribution to capture the background
interactions.

HEU in Steel: MCNP Test

The synthesized scenario is a highly-enriched uranium
(HEU) ball in a steel shell that has a high multiplica-
tion with keff = 0.951 ≡ M = 20.5. Because the system
has no hydrogenous material to moderate the neutrons,
the diffusion time λ−1 ≈ 40 µs which coincides with the
diffusion time in the MC-15 joint multiplicity counter.
Detection efficiency using a single MC-15 joint multiplic-
ity counter with the front and back panels separated was

FIG. 38. Posterior PMF of various slices (75, 100 inter-
arrivals) illustrating the multimodal (arrows) nature of the
distributions as well as the coalescing of particles (circles) in
highest probability regions.

ε = 1.511 ± 0.007%. The MCNP simulation parameters
and geometry are:

1. HEU (93% enriched): r = 7.5 cm, m = 33 kg, ρ =
18.67 g/cm3, mass of 238U mS = 1.837 kg

2. 72:18:10 (Fe:Cr:Ni) Steel: r = 10.0 cm, thickness = 2.5
cm, m = 19.13 kg, ρ = 7.9 g/cm3

3. Inside air-filled, 1 mm thick 72:18:10 (Fe:Cr:Ni) Steel
drum: r = 30.0 cm, l = 88.0 cm, m = 17.57 kg, ρ = 7.9
g/cm3

4. One MC-15 joint multiplicity counter, front and back
panels separated on either side of the drum 31 cm from
the center of the source (shown in red in Fig. 39).

5. Source and detector center 1 m above a 30 cm thick
concrete floor. Source center 2.7 m from 30 cm thick
concrete walls and ceiling.

The results of applying the PF parameter estimator are
shown in Fig. 40 for the case of HEU in steel—the high
multiplication case. An ensemble of 100 runs with back-
ground was created using the MCNP simulation software
with the parameter estimates shown along with their en-
semble averages for both the conditional mean and max-
imum a-posterior (MAP) estimators. Both estimators
track one another well. The converged parameter esti-
mates as shown in the figure are listed in Table IV where
we see reasonable estimates for the effective multiplica-
tion with a relative error of 2% and inverse diffusion time.
The mass and detection efficiency estimates are poor with
large relative errors.

The detection performance over the ensemble can be
bounded using the true parameter values. That is, we
used the “true” source parameters to calculate the se-
quential log-likelihood decision function providing an es-
timate of the best (no parameter error) detection perfor-
mance possible as indicated by the ROC curve with the
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FIG. 39. Schematic of the setup of the HEU in steel configu-
ration used in the MCNP simulation.

Case Study
Parameters/Metrics Feasibility HEU Steel

Mass(kg) 25.00± 0.03 3.0± 6.0
Eff.Mult. 0.900± 0.003 0.932± 0.016
Det.Effic. 0.030± 0.0006 0.030± 0.010
Inv.Diff.(µs)−1 0.010± 0.00004 0.027± 0.007
PDET 0.916 0.820
PFA 0.007 0.017
AUC 0.951 0.89

TABLE IV. Parameter estimation/detection results from the
Monte Carlo simulation of HEU in steel.

detailed inset of Fig. 41. This approach was selected
in order to bound the estimated ROC curve enabling us
to determine the required thresholds for the sequential
detector. The detection and false alarm probabilities
are quite reasonable for this case, that is, for HEU in
steel the optimum operating point of PFA = 0.017 and
PDET = 0.820 was calculated indicating a detection per-
formance bound along with the area-under-ROC-curve
(AUC=0.89) for this case41.

The inverse of the neutron diffusion time, λ, indicates
that no neutron-moderating hydrogenous material was
present: λ−1 = 37.0 µs is the neutron diffusion time
of the polyethylene in the MC-15 neutron multiplicity
counter itself.
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FIG. 41. Receiver operating characteristic (ROC) curve bound for HEU in steel obtained using “true” parameters with
optimum operating point of PFA = 0.017, PDET = 0.820, and the AUC = 0.89.
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